DOI QR코드

DOI QR Code

Threshold-asymmetric volatility models for integer-valued time series

  • Kim, Deok Ryun (Department of Statistics, Sookmyung Women's University) ;
  • Yoon, Jae Eun (Department of Statistics, Sookmyung Women's University) ;
  • Hwang, Sun Young (Department of Statistics, Sookmyung Women's University)
  • Received : 2019.01.09
  • Accepted : 2019.03.05
  • Published : 2019.05.31

Abstract

This article deals with threshold-asymmetric volatility models for over-dispersed and zero-inflated time series of count data. We introduce various threshold integer-valued autoregressive conditional heteroscedasticity (ARCH) models as incorporating over-dispersion and zero-inflation via conditional Poisson and negative binomial distributions. EM-algorithm is used to estimate parameters. The cholera data from Kolkata in India from 2006 to 2011 is analyzed as a real application. In order to construct the threshold-variable, both local constant mean which is time-varying and grand mean are adopted. It is noted via a data application that threshold model as an asymmetric version is useful in modelling count time series volatility.

Keywords

References

  1. Ali M, Debes AK, Luquero FJ, et al. (2016). Potential for controlling cholera using a ring vaccination strategy: re-analysis of data from a cluster-randomized clinical trial, PLoS Medicien, 13, e1002120. https://doi.org/10.1371/journal.pmed.1002120
  2. Al-Osh MA and Alzaid AA (1988). Integer-valued moving average (INMA) process, Statistical Papers, 29, 281-300. https://doi.org/10.1007/BF02924535
  3. Alzaid AA and Al-Osh M (1990). An integer-valued pth-order autoregressive structure INAR(p) process, Journal of Applied Probability, 27, 314-324. https://doi.org/10.2307/3214650
  4. Azman AS, Rudolph KE, Cummings DAT, and Lessler J (2013). The incubation period of cholera: a systematic review, The Journal of Infection, 66, 432-438. https://doi.org/10.1016/j.jinf.2012.11.013
  5. Bartlett A and McCormick WP (2017). Estimation for a first-order bifurcating autoregressive process with heavy-tail innovations, Stochastic Models, 33, 210-228. https://doi.org/10.1080/15326349.2016.1236695
  6. Cardinal M, Roy R, and Lambert J (1999). On the application of integer-valued time series models for the analysis of disease incidence, Statistics in Medicine, 18, 2025-2039. https://doi.org/10.1002/(SICI)1097-0258(19990815)18:15<2025::AID-SIM163>3.0.CO;2-D
  7. Ferland R, Latour A, and Oraichi D (2006). Integer-valued GARCH process, Journal of Time Series Analysis, 27, 923-942. https://doi.org/10.1111/j.1467-9892.2006.00496.x
  8. Fokianos K and Fried R (2010). Interventions in INGARCH processes, Journal of Time Series Analysis, 31, 210-225. https://doi.org/10.1111/j.1467-9892.2010.00657.x
  9. Freeland R and McCabe B (2004). Analysis of low count time series data by Poisson autoregression, Journal of Time Series Analysis, 25, 701-722. https://doi.org/10.1111/j.1467-9892.2004.01885.x
  10. McCabe BPM and Martin GM (2005). Bayesian prediction of low count time series, International Journal of Forecasting, 21, 315-330. https://doi.org/10.1016/j.ijforecast.2004.11.001
  11. McKenzie E (1985). Some simple models for discrete variate time series, Water Resources Bulletin, 21, 635-644. https://doi.org/10.1111/j.1752-1688.1985.tb05378.x
  12. McKenzie E (1988). Some ARMA models for dependent sequences of Poisson counts, Advances in Applied Probability, 20, 822-835. https://doi.org/10.2307/1427362
  13. Pavlopoulos H and Karlis D (2008). INAR(1) modeling of overdispersed count series with an environmental application, Environmetrics, 190, 369-393. https://doi.org/10.1002/env.883
  14. Puig P and Valero J (2006). Count data distributions, Journal of the American Statistical Association, 101, 332-340. https://doi.org/10.1198/016214505000000718
  15. Quoreshi AMMS (2014). A long-memory integer-valued time series model, INARFIMA, for financial application, Quantitative Finance, 14, 2225-2235. https://doi.org/10.1080/14697688.2012.711911
  16. Ridout M, Hinde J, and Demetrio CGB (2001). A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives, Biometrics, 57, 219-223. https://doi.org/10.1111/j.0006-341X.2001.00219.x
  17. Self SG and Liang KY (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions, Journal of American Statistical Association, 82, 605-610. https://doi.org/10.1080/01621459.1987.10478472
  18. Thyregod P, Carstensen J, Madsen H, and Arnbjerg-Nielsen K (1999). Integer valued autoregressive models for tipping bucket rainfall measurements, Environmetrics, 10, 395-411. https://doi.org/10.1002/(SICI)1099-095X(199907/08)10:4<395::AID-ENV364>3.0.CO;2-M
  19. Truong BC, Chen CW, and Sriboonchitta S (2017). Hysteretic Poisson INGARCH model for integer-valued time series, Statistical Modelling, 17, 401-422. https://doi.org/10.1177/1471082X17703855
  20. Wang C, Liu H, Yao JF, Davis RA, and Li WK (2014). Self-excited threshold Poisson autoregression, Journal of the American Statistical Association, 109, 777-787. https://doi.org/10.1080/01621459.2013.872994
  21. WeiB CH (2010). The INARCH(1) model for overdispersed time series of counts, Communications in Statistics: Simulation and Computation, 39, 1269-1291. https://doi.org/10.1080/03610918.2010.490317
  22. Wu S and Chen R (2007). Threshold variable determination and threshold variable driven switching autoregressive models, Statistica Sinica, 17, 241-264.
  23. Yoon JE and Hwang SY (2015a). Integer-valued GARCH models for count time series: case study, Korean Journal of Applied Statistics, 28, 115-122. https://doi.org/10.5351/KJAS.2015.28.1.115
  24. Yoon JE and Hwang SY (2015b). Zero-inflated INGARCH using conditional Poisson and negative binomial: data application, Korean Journal of Applied Statistics, 28, 583-592. https://doi.org/10.5351/KJAS.2015.28.3.583
  25. Zhou J and Basawa IV (2005). Least-squared estimation for bifurcation autoregressive processes, Statistics & Probability Letters, 74, 77-88. https://doi.org/10.1016/j.spl.2005.04.024
  26. Zhu F (2011). A negative binomial integer-valued GARCH model, Journal of Time Series Analysis, 32, 54-67. https://doi.org/10.1111/j.1467-9892.2010.00684.x
  27. Zhu F (2012a). Zero-inflated Poisson and negative binomial integer-valued GARCH models, Journal of Statistical Planning and Inference, 142, 826-839. https://doi.org/10.1016/j.jspi.2011.10.002
  28. Zhu F (2012b). Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued GARCH models, Journal of Mathematical Analysis and Applications, 389, 58-71. https://doi.org/10.1016/j.jmaa.2011.11.042
  29. Zhu F and Wang D (2010). Diagnostic checking integer-valued ARCH(p) models using conditional residual autocorrelations, Computational Statistics and Data Analysis, 54, 496-508. https://doi.org/10.1016/j.csda.2009.09.019