• Title/Summary/Keyword: time integration algorithm

Search Result 348, Processing Time 0.021 seconds

Postbuckling Analysis of Thin Plates under Impact Loading (충격하중을 받는 박판의 후좌굴 해석)

  • Kim, Hyeong-Yeol;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.139-149
    • /
    • 2002
  • An explicit direct time integration method based solution algorithm is proposed to predict dynamic postbuckling response of thin plates. Based on the von Karman's plate equations and Marquerre's shallow shell theory, a rectangular plate finite element is formulated and utilized in this study. The element formulation takes into account geometrical nonlinearity and initial deflection of plates. The solution algorithm employs the central difference method. Using the computer program developed by the authors, dynamic postbuckling behavior of elastic thin plates under impact loading is investigated by considering the time variation of load and load duration. The efficiency of the proposed solution algorithm is examined through illustrative numerical examples.

A Real-time and Off-line Localization Algorithm for an Inpipe Robot by Detecting Elbows (엘보 인식에 의한 배관로봇의 실시간 위치 추정 및 후처리 위치 측정 알고리즘)

  • Lee, Chae Hyeuk;Kim, Gwang Ho;Kim, Jae Jun;Kim, Byung Soo;Lee, Soon Geul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1044-1050
    • /
    • 2014
  • Robots used for pipe inspection have been studied for a long time and many mobile mechanisms have been proposed to achieve inspection tasks within pipelines. Localization is an important factor for an inpipe robot to perform successful autonomous operation. However, sensors such as GPS and beacons cannot be used because of the unique characteristics of inpipe conditions. In this paper, an inpipe localization algorithm based on elbow detection is presented. By processing the projected marker images of laser pointers and the attitude and heading data from an IMU, the odometer module of the robot determines whether the robot is within a straight pipe or an elbow and minimizes the integration error in the orientation. In addition, an off-line positioning algorithm has been performed with forward and backward estimation and Procrustes analysis. The experimental environment has consisted of several straight pipes and elbows, and a map of the pipeline has been constructed as the result.

A Heuristic Algorithm of an Efficient Berth Allocation for a Public Container Terminal (공공 컨테이너 터미널의 효율적인 선석할당을 위한 발견적 알고리즘 개발에 관한 연구)

  • Keum, J.S.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.191-202
    • /
    • 1997
  • As the suitability of berth allocation will ultimately have a significant influence on the performance of a berth, a great deal of attention should be given to berth allocation. Generally, a berth allocation problem has conflicting factors between servers and users. In addition, there is uncertainty in great extent caused by various factors such as departure delay, inclement weather on route, poor handling equipment, a lack of storage space, and other factors contribute to the uncertainty of arrival and berthing time. Thus, it is necessary to establish berth allocation planning which reflects the positions of interested parties and the ambiguity of parameters. For this, a berth allocation problem is formulated by fuzzy 0-1 integer programming introducing the concept of maximum Position Shift(MPS). But, the above approach has limitations in terms of computational time and computer memory when the size of problem is increased. It also has limitations with respect to the integration of other sub-systems such as ship planning system and yard planning system. For solving such problem, this paper focuses particularly on developing an efficient heuristic algorithm as a new technique of getting an effective solution. And also the suggested algorithm is verified through the illustrative examples and empirical appalicaton to BCTOC.

  • PDF

Delay Optimization Algorithm for the High Speed Operation of FPGAs (FPGA를 고속으로 동작시키기 위한 지연시간 최적화 알고리듬)

  • Choi, Ick-Sung;Lee, Jeong-Hee;Lee, Bhum-Cheol;Kim, Nam-U
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.7
    • /
    • pp.50-57
    • /
    • 2000
  • We propose a logic synthesis algorithm for the design of FPGAs operating at high speed. FPGA is a novel technology that provides programmability in the field. Because of short turnaround time and low manufacturing cost, FPGA has been noticed as an ideal device for system prototyping. Despite these merits, FPGA has drawbacks, namely low integration and long delay time comparing to ASIC. The proposed algorithm partitions a given circuit into subcircuits utilizing a kernel divisor such that the subcircuits can be performed at the same time, hence reducing the delay of the circuit. Experimental results on the MCNC benchmark show that the proposed algorithm is effective by generating circuits having 19.1% les delay on average, when compared to the FlowMap algorithm.

  • PDF

An Analysis of High Speed Forming Using the Explicit Time Integration Finite Element Method(II) - Application to High Speed Rolling - (엑스플리시트 시간 적분 유한 요소법을 이용한 고속 성형 해석(II) - 고속 압연 해석)

  • 유요한;정동택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1551-1562
    • /
    • 1991
  • 최근까지 발표된 유한 요소법을 이용한 압연 해석 관련 주요 논문들을 정리해 보면 다음과 같다. Li와 Kobayashil는 강소성 유한 요소법(rigidplastic finite element method)을 여러가지 마찰조건에 대하여 해석하였다. 이때 압연롤은 강체 (rigid body)로 시편은 가공경화(workhardening)를 동반한 강소성체로 모델링하였다. Hwang과 Kobayashi는 강소성 유한 요소법을 이용한 평면 변형 압연에서 재료 손실을 최소화하는 예비 성형체(preform)의 설계에 대한 연구를 수행하였다. 이 경우에도 역시 압연롤은 강체로 시편은 가공 경화를 동반한 강소성체와 완전 소성체로 모델링 되었으나, 고착(sticking) 마찰 조건에 대해서만 해석을 수행하였다. Mori와 Osak- ada 그리고 Oda는 약간 압축성이 있는 재료의 평면 변형 압연에 대하여 연구하였다. 이때 압연롤은 강체로 시편은 가공 경화를 동반한 강소성체로 모델링 되었으며 경계 면에서는 Coulomb 마찰을 고려하였다. 이밖에도 오일러(Eulerian) 수식화를 이용한 Dawson과 Thompson, Berman의 해석 결과가 있으며, 또 폭 방향의 변형까지를 고려한 Li와 Kobayashi, Mori와 Osakada의 3차원 해석 결과가 있다.

Adaptive algorithm for optimal real-time pricing in cognitive radio enabled smart grid network

  • Das, Deepa;Rout, Deepak Kumar
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.585-595
    • /
    • 2020
  • Integration of multiple communication technologies in a smart grid (SG) enables employing cognitive radio (CR) technology for improving reliability and security with low latency by adaptively and effectively allocating spectral resources. The versatile features of the CR enable the smart meter to select either the unlicensed or the licensed band for transmitting data to the utility company, thus reducing communication outage. Demand response management is regarded as the control unit of the SG that balances the load by regulating the real-time price that benefits both the utility company and consumers. In this study, joint allocation of the transmission power to the smart meter and consumer's demand is formulated as a two stage multi-armed bandit game in which the players select their optimal strategies noncooperatively without having any prior information about the media. Furthermore, based on historical rewards of the player, a real-time pricing adaptation method is proposed. The latter is validated through numerical results.

Development of an implicit filling algorithm (암시적 방법을 이용한 충전 알고리즘의 개발)

  • Im, Ik-Tae;Kim, U-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.104-112
    • /
    • 1998
  • The mold filling process has been a central issue in the development of numerical methods to solve the casting processes. A mold filling which is inherently transient free surface fluid flow, is important because the quality of casting highly depends on such phenomenon, Most of the existing numerical schemes to solve mold filling process have severe limitations in time step restrictions or Courant criteria since explicit time integration is used. Therefore, a large computation time is required to analyze casting processes. In this study, the well known SOLA-VOF method has been modified implicitly to simulate the mold filling process. Solutions to example filling problems show that the proposed method is more efficient in computation time than the original SOLA -VOF method.

Profile-based TRN/INS Integration Algorithm Considering Terrain Roughness (지형 험준도를 고려한 프로파일 기반 지형참조항법과 관성항법의 결합 알고리즘)

  • Yoo, Young Min;Lee, Sun Min;Kwon, Jay Hyun;Yu, Myeong Jong;Park, Chan Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.131-139
    • /
    • 2013
  • In recent years alternative navigation system such as a DBRN (Data-Base Referenced Navigation) system using geophysical information is getting attention in the military navigation systems in advanced countries. Specifically TRN (Terrain Referenced Navigation) algorithm research is important because TRN system is a practical DBRN application in South Korea at present time. This paper presents an integrated navigation algorithm that combines a linear profile-based TRN and INS (Inertial Navigation System). We propose a correlation analysis method between TRN performance and terrain roughness index. Then we propose a conditional position update scheme that utilizes the position output of the conventional linear profile type TRN depending on the terrain roughness index. Performance of the proposed algorithm is verified through Monte Carlo computer simulations using the actual terrain database. The results show that the TRN/INS integrated algorithm, even when the initial INS error is present, overcomes the shortcomings of linear profile-based TRN and improves navigation performance.

Integrated SIFT Algorithm with Feature Point Matching Filter for Relative Position Estimation (특징점 정합 필터 결합 SIFT를 이용한 상대 위치 추정)

  • Gwak, Min-Gyu;Sung, Sang-Kyung;Yun, Suk-Chang;Won, Dae-Hee;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.759-766
    • /
    • 2009
  • The purpose of this paper is an image processing algorithm development as a base research achieving performance enhancement of integrated navigation system. We used the SIFT (Scale Invariant Feature Transform) algorithm for image processing, and developed feature point matching filter for rejecting mismatched points. By applying the proposed algorithm, it is obtained better result than other methods of parameter tuning and KLT based feature point tracking. For further study, integration with INS and algorithm optimization for the real-time implementation are under investigation.

Combined multi-predict-correct iterative method for interaction between pulsatile flow and large deformation structure

  • Wang, Wenquan;Zhang, Li-Xiang;Yan, Yan;Guo, Yakun
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.361-379
    • /
    • 2012
  • This paper presents a fully coupled three-dimensional solver for the analysis of interaction between pulsatile flow and large deformation structure. A partitioned time marching algorithm is employed for the solution of the time dependent coupled discretised problem, enabling the use of highly developed, robust and well-tested solvers for each field. Conservative transfer of information at the fluid-structure interface is combined with an effective multi-predict-correct iterative scheme to enable implicit coupling of the interacting fields at each time increment. The three-dimensional unsteady incompressible fluid is solved using a powerful implicit time stepping technique and an ALE formulation for moving boundaries with second-order time accurate is used. A full spectrum of total variational diminishing (TVD) schemes in unstructured grids is allowed implementation for the advection terms and finite element shape functions are used to evaluate the solution and its variation within mesh elements. A finite element dynamic analysis of the highly deformable structure is carried out with a numerical strategy combining the implicit Newmark time integration algorithm with a Newton-Raphson second-order optimisation method. The proposed model is used to predict the wave flow fields of a particular flow-induced vibrational phenomenon, and comparison of the numerical results with available experimental data validates the methodology and assesses its accuracy. Another test case about three-dimensional biomedical model with pulsatile inflow is presented to benchmark the algorithm and to demonstrate the potential applications of this method.