• Title/Summary/Keyword: time harmonic source

Search Result 89, Processing Time 0.031 seconds

A New Assessment for the Total Harmonic Contributions at the Point of Common Coupling

  • Han, Jong-Hoon;Lee, Kyebyung;Song, Chong Suk;Jang, Gilsoo;Byeon, Gilsung;Park, Chang-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.6-14
    • /
    • 2014
  • A new method to determine the total harmonic contributions of several customers and the utility at the point of common coupling is presented. The proposed method can quantify the individual harmonic impact of each suspicious harmonic source at the point of common coupling. The individual harmonic impact index is then used to assess the total harmonic contribution of each harmonic source. This index can be calculated by the results processed from instantaneous harmonic voltage and current phasor values. The results demonstrate the performance of the proposed method in terms of steady-state accuracy and response to time-varying operating conditions. The proposed index can be used for billing purposes to control harmonic distortion levels in power systems.

Axisymmetric thermomechanical analysis of transversely isotropic magneto thermoelastic solid due to time-harmonic sources

  • Lata, Parveen;Kaur, Iqbal
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.415-437
    • /
    • 2019
  • The present research deals with two-dimensional axisymmetric deformation in transversely isotropic magneto thermoelastic solid with and without energy dissipation, with two temperature and time-harmonic source. The proposed model is helpful for finding the type of relations between mechanical and thermal fields as most of the structural elements of heavy industries are frequently related to mechanical and thermal stresses at a higher temperature. The Hankel transform has been used to find a solution to the problem. The displacement components, stress components, and temperature distribution with the horizontal distance in the physical domain are calculated numerically. The effect of time-harmonic source and two temperature is depicted graphically on the resulting quantities.

On the Linear Harmonic Analysis of Engine Exhaust and Intake Systems

  • Peat, Keith
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.27-33
    • /
    • 2001
  • Linear harmonic analysis is a convenient and generally accurate method to use for the acoustic analysis of intake and exhaust silencers for IC engines. The major uncertainty in this form of modelling is the characterisation of the source, which is inherently nonlinear and time-variant. Experimental methods are generally used to determine the source characteristics, and in particular the indirect method is most suitable for an IC-engine source. With reference to an idealised linear time-variant source, it is found that the characteristics of a time-variant source as determined by the indirect method have no physical relevance. The direct method of experimental measurement appears to have some advantage over the indirect method, although in practice it is difficult to apply to an IC engine source. Again, an idealised linear time-variant source can be used to indicate that the characteristics of a time-variant source as determined by the direct method also have no physical relevance. Strangely, these meaningless measured source properties can nevertheless be used to accurately predict the radiated noise from an IC engine and silencer system.

  • PDF

Effect of inclined load on transversely isotropic magneto thermoelastic rotating solid with time harmonic source

  • Lata, Parveen;Kaur, Iqbal
    • Advances in materials Research
    • /
    • v.8 no.2
    • /
    • pp.83-102
    • /
    • 2019
  • The present research deals with the time harmonic deformation in transversely isotropic magneto thermoelastic solid with two temperature (2T), rotation and without energy dissipation due to inclined load. Lord-Shulman theory has been formulated for this mathematical model. The entire thermo-elastic medium is rotating with a uniform angular velocity. The Fourier transform techniques have been used to find the solution to the problem. The displacement components, stress components and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. The effect of time harmonic source and rotation is depicted graphically on the resulting quantities.

Time Harmonic interactions in the axisymmetric behaviour of transversely isotropic thermoelastic solid using New M-CST

  • Lata, Parveen;Kaur, Harpreet
    • Coupled systems mechanics
    • /
    • v.9 no.6
    • /
    • pp.521-538
    • /
    • 2020
  • The present study is concerned with the thermoelastic interactions in a two dimensional homogeneous, transversely isotropic thermoelastic solid with new modified couple stress theory without energy dissipation and with two temperatures in frequency domain. The time harmonic sources and Hankel transform technique have been employed to find the general solution to the field equations.Concentrated normal force, normal force over the circular region, thermal point source and thermal source over the circular region have been taken to illustrate the application of the approach. The components of displacements, stress, couple stress and conductive temperature distribution are obtained in the transformed domain. The resulting quantities are obtained in the physical domain by using numerical inversion technique. Numerically simulated results are depicted graphically to show the effect of angular frequency on the resulted quantities.

Thermomechanical interactions in a transversely isotropic magneto thermoelastic solids with two temperatures and rotation due to time harmonic sources

  • Lata, Parveen;Kaur, Iqbal
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.219-245
    • /
    • 2019
  • The present research deals in two dimensional (2D) transversely isotropic magneto generalized thermoelastic solid without energy dissipation and with two temperatures due to time harmonic sources in Lord-Shulman (LS) theory of thermoelasticity. The Fourier transform has been used to find the solution of the problem. The displacement components, stress components and conductive temperature distribution with the horizontal distance are calculated in transformed domain and further calculated in the physical domain numerically. The effect of two temperature are depicted graphically on the resulting quantities.

Real-Time Implementation of the EHSX Speech Coder Using a Floating Point DSP (부동 소수점 DSP를 이용한 4kbps EHSX 음성 부호화기의 실시간 구현)

  • 이인성;박동원;김정호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.420-427
    • /
    • 2004
  • This paper presents real time implementation of 4kbps EHSX (Enhanced Harmonic Stochastic Excitation) speech coder that combines the harmonic vector excitation coding with time-separated transition coding. The harmonic vector excitation coding uses the harmonic excitation coding for voiced frames and used the vector excitation coding with the structure of analysis-by-synthesis for unvoiced frames, respectively. For transition frames mixed with voiced and unvoiced signal, we use the time-separated transition coding. In this paper. we present the optimization methods of implementation speech coder on the EMS320C6701/sup (R)/ DSP. To reduce the complex for real-time implementation. we perform the optimization method in algorithm by replacing the complex sinusoidal synthesis method with IFFT. and we apply fully pipelines hand assembly coding after converting it from floating source to fixed source. To generate a more efficient code. we also make use or the available EMS320C6701/sup (R)/ resources such as Fastest67x library and memory organization.

2-D Periodic Unsteady Flow Analysis Using a Partially Implicit Harmonic Balance Method (부분 내재적 조화 균형법을 이용한 주기적인 2차원 비정상 유동 해석)

  • Im, Dong-Kyun;Park, Soo-Hyung;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1153-1161
    • /
    • 2010
  • An efficient solution method for harmonic balance techniques with Fourier transform is presented for periodic unsteady flow problems. The present partially-implicit harmonic balance treats the flux terms implicitly and the harmonic source term is solved explicitly. The convergence of the partially Implicit method is much faster than the explicit Runge-Kutta harmonic balance method. The method does not need to compute the additional flux Jacobian matrix from the implicit harmonic source term. Compared with fully implicit harmonic balance method, this partial approach turns out to have good convergence property. Oscillating flows over NACA0012 airfoil are considered to verify the method and to compare with results of explicit R-K(Runge-Kutta) and dual time stepping methods.

Analysis of Inverter-Fed Induction Motor Using F.E.M and Harmonic Equivalent Circuit (슬롯피치 경계 조건을 이용한 인버터 구동 유도 전동기의 회전자 등가회로 정수 추출 및 특성해석)

  • Lee, Geon-Ho;Kim, Byeong-Tae;Gwon, Byeong-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.331-338
    • /
    • 2002
  • An inverter-fed induction is driven by a harmonic voltage source so that it is necessary to be analysed by time-stepping F.E.M. But it takes so long time that disadvantageous to design. This paper presents a simple analysis method for inverter-fed induction motor using FEM and harmonic equivalent circuit. First, the rotor bar resistance and the leakage reactance are determinated by FEA for 1 slot region in rotor to consider the skin effect and the saturation. Secondly, the characteristic of the motor is analyzed by the harmonic equivalent circuits consisting of the obtained parameters from the FEA. This method is carried out to analyze an induction motor driven by the sinusoidal voltage and the inverter. The results are verified by comparing with those of the time-step F.E.A and the experiment.

Effect of thermal laser pulse in transversely isotropic Magneto-thermoelastic solid due to Time-Harmonic sources

  • Lata, Parveen;Kaur, Iqbal;Singh, Kulvinder
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.343-358
    • /
    • 2020
  • The present research deals with the time-harmonic deformation in transversely isotropic magneto thermoelastic solid with two temperature (2T), rotation due to inclined load and laser pulse. Generalized theory of thermoelasticity has been formulated for this mathematical model. The entire thermo-elastic medium is rotating with uniform angular velocity and subjected to thermally insulated and isothermal boundaries. The inclined load is supposed to be a linear combination of a normal load and a tangential load. The Fourier transform techniques have been used to find the solution to the problem. The displacement components, stress components, and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. The effect of angle of inclination of normal and tangential load for Green Lindsay Model and time-harmonic source for Lord Shulman model is depicted graphically on the resulting quantities.