Browse > Article
http://dx.doi.org/10.12989/amr.2019.8.2.083

Effect of inclined load on transversely isotropic magneto thermoelastic rotating solid with time harmonic source  

Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University)
Kaur, Iqbal (Department of Basic and Applied Sciences, Punjabi University)
Publication Information
Advances in materials Research / v.8, no.2, 2019 , pp. 83-102 More about this Journal
Abstract
The present research deals with the time harmonic deformation in transversely isotropic magneto thermoelastic solid with two temperature (2T), rotation and without energy dissipation due to inclined load. Lord-Shulman theory has been formulated for this mathematical model. The entire thermo-elastic medium is rotating with a uniform angular velocity. The Fourier transform techniques have been used to find the solution to the problem. The displacement components, stress components and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. The effect of time harmonic source and rotation is depicted graphically on the resulting quantities.
Keywords
time harmonic sources; transversely isotropic thermoelastic; rotation; inclined load; magneto thermoelastic solid;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Chen, P.J., Gurtin, M.E. and Williams, W.O. (1969), "On the thermodynamics of non-simple elastic materials with two temperatures", Zeitschrift fur angewandte Mathematik und Physik, 20(1), 107-112. https://doi.org/10.1007/BF01591120   DOI
2 Dhaliwal, R.S. and Sherief, H.H. (1980), "Generalized thermoelasticity for anisotropic media", Quarter. Appl. Math., 38(1), 1-8. https://doi.org/10.1090/qam/575828   DOI
3 Ezzat, M. and AI-Bary, A. (2016), "Magneto-thermoelectric viscoelastic materials with memory dependent derivatives involving two temperature", Int. J. Appl. Electromagnet. Mech., 50(4), 549-567. https://doi.org/10.3233/JAE-150131   DOI
4 Ezzat, M.A. and El-Bary, A.A. (2017a), "A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer", Steel Compos. Struct., Int. J., 25(2), 177-186. https://doi.org/10.12989/scs.2017.25.2.177
5 Chauthale, S. and Khobragade, N.W. (2017), "Thermoelastic response of a thick circular plate due to heat generation and its thermal stresses", Global J. Pure Appl. Math..13, 7505-7527.
6 Ezzat, M.A. and El-Bary, A.A. (2017b), "Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories", Steel Compos. Struct., Int. J., 24(3), 297-307.
7 Ezzat, M.A., El-Karamany, A.S. and Ezzat, S.M. (2012), "Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer", Nuclear Eng. Des., 252, 267- 277. https://doi.org/10.1016/j.nucengdes.2012.06.012   DOI
8 Ezzat, M., El-Karamany, A. and El-Bary, A. (2015), "Thermo-viscoelastic materials with fractional relaxation operators", Appl. Math. Model., 39(23), 7499-7512. https://doi.org/10.1016/j.apm.2015.03.018   DOI
9 Marin, M. (1998), "Contributions on uniqueness in thermoelastodynamics on bodies with voids", Revista Cienc. Mat. (Havana), 16(2), 101-109.
10 Marin, M. (2008), "Weak solutions in elasticity of dipolar porous materials", Math. Problems Eng., 1-8. http://dx.doi.org/10.1155/2008/158908
11 Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlinear Anal.: Real World Appl., 10(3), 1572-1578. https://doi.org/10.1016/j.nonrwa.2008.02.001   DOI
12 Marin, M. (2010), "A partition of energy in thermoelasticity of microstretch bodies", Nonlinear Anal.: Real World Appl., 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014   DOI
13 Marin, M. (2016), "An approach of a heat flux dependent theory for micropolar porous media", Meccanica, 51(5), 1127-1133. https://doi.org/10.1007/s11012-015-0265-2   DOI
14 Marin, M. and Baleanu, D. (2016), "On vibrations in thermoelasticity without energy dissipation for micropolar bodies", Boundary Value Problems, 2016(1), 111. https://doi.org/10.1007/s11012-015-0265-2   DOI
15 Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continuum Mech. Thermodyn., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4   DOI
16 Marin, M. and Ochsner, A. (2017), "The effect of a dipolar structure on the Holder stability in Green-Naghdi thermoelasticity", Continuum Mech. Thermodyn., 29, 1365-1374. https://doi.org/10.1007/s00161-017-0585-7   DOI
17 Marin, M. and Stan, G. (2013), "Weak solutions in Elasticity of dipolar bodies with stretch", Carpathian J. Math., 29(1), 33-40.   DOI
18 Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Modeling a microstretch thermoelastic body with two temperatures", Abstract Appl. Anal., 2013, 1-7. http://dx.doi.org/10.1155/2013/583464
19 Ezzat, M., El-Karamany, A. and El-Bary, A. (2016), "Generalized thermoelasticity with memory-dependent derivatives involving two temperatures", Mech. Adv. Mater. Struct., 23(5), 545-553. https://doi.org/10.1080/15376494.2015.1007189   DOI
20 Abd-alla, A.E.N.N., Alshaikh, F., Del Vescovo, D. and Spagnuolo, M. (2015), "Plane waves and eigenfrequency study in a transversely isotropic magneto-thermoelastic medium under the effect of a constant angular velocity", New Developments Pure Appl. Math., 40(9), 1079-1092. https://doi.org/10.1080/01495739.2017.1334528
21 Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2017a), "Two-temperature theory in Green-Naghdi thermoelasticity with fractional phase-lag heat transfer", Microsyst. Technol., 24(2), 951-961. https://doi.org/10.1007/s00542-017-3425-6   DOI
22 Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2017b), "Thermoelectric viscoelastic materials with memory-dependent derivative", Smart Struct. Syst., Int. J., 19(5), 539-577. http://dx.doi.org/10.12989/sss.2017.19.5.539   DOI
23 Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Thermal Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136   DOI
24 Green, A.E. and Naghdi, P.M. (2017), "Thermoelasticity without energy dissipation", J. Phys. Math. , 31(3), 189-208. https://doi.org/10.1007/BF00044969
25 Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of Laplace transform", J. Computat. Appl. Math., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X   DOI
26 Kumar, R., Sharma, N. and Lata, P. (2016a), "Effects of Hall current in a transversely isotropic magnetothermoelastic with and without energy dissipation due to normal force", Struct. Eng. Mech., Int. J. 57(1), 91-103. http://dx.doi.org/10.12989/sem.2016.57.1.091   DOI
27 Kumar, R., Sharma, N. and Lata, P. (2016b), "Thermomechanical interactions due to hall current in transversely isotropic thermoelastic with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
28 Othman, M.I., Khan, A., Jahangir, R. and Jahangir, A. (2019), "Analysis on plane waves through magneto-thermoelastic microstretch rotating medium with temperature dependent elastic properties", Appl. Math. Model., 65, 535-548. https://doi.org/10.1016/j.apm.2018.08.032   DOI
29 Marin, M., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpathian J. Math., 33(2), 219-232.   DOI
30 Othman, M.I. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Results Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012   DOI
31 Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1986), "Numerical recipes in Fortran 77", Cambridge University Press Cambridge.
32 Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quarter. Appl. Math., 31, 115-125.   DOI
33 Sharma, J.N. and Kaur, D. (2010), "Rayleigh waves in rotating thermoelastic solids with voids", Int. J. Appl. Math. Mech., 6(3), 43-61. https://doi.org/10.1090/qam/99708
34 Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22, 107-117.
35 Shaw, S. and Mukhopadhyay, B. (2015), "Electromagnetic effects on wave propagation in an isotropic micropolar plate", J. Eng. Phys. Thermophys., 88(6), 1537-1547. https://doi.org/10.1007/s10891-015-1341-0   DOI
36 Singh, B. and Yadav, A.K. (2012), "Plane waves in a transversely isotropic rotating magnetothermoelastic medium", J. Eng. Phys. Thermophys., 85(5), 1226-1232. https://doi.org/10.1007/s10891-012-0765-z   DOI
37 Slaughter, W.S. (2002), The Linearised Theory of Elasticity, Birkhausar.
38 Ailawalia, P., Kumar, S. and Pathania, D. (2010), "Effect of rotation in a generalized thermoelastic medium with two temperature under hydrostatic initial stress and gravity", Multidiscipl. Model. Mater. Struct., 6(2), 185-205. https://doi.org/10.1108/15736101011067984   DOI
39 Abo-Dahab, S.M., Jahangir, A. and Abo-el-nour, N. (2018), "Reflection of plane waves in thermoelastic microstructured materials under the influence of gravitation", Continuum Mech. Thermodyn., 1-13. https://doi.org/10.1007/s00161-018-0739-2
40 Ailawalia, P. and Narah, N.S. (2009), "Effect of rotation in generalized thermoelastic solid under the influence of gravity with an overlying infinite thermoelastic fluid", Appl. Math. Mech. (English Edition) 30(12), 1505-1518. https://doi.org/10.1007/s10483-009-1203-6   DOI
41 Banik, S. and Kanoria, M. (2012), "Effects of three-phase-lag on two-temperature generalized thermoelasticity for infinite medium with spherical cavity", Appl. Math. Mech., 33(4), 483-498. https://doi.org/10.1007/s10483-012-1565-8   DOI
42 Bijarnia, R. and Singh, B. (2016), "Propagation of plane waves in a rotating transversely isotropic two temperature generalized thermoelastic solid half-space with voids", Int. J. Appl. Mech. Eng., 21(2), 285-301. https://doi.org/10.1515/ijame-2016-0018   DOI
43 Abd-Alla, A.M., Abo-Dahab, S.M. and Al-Thamali, T.A. (2012), "Propagation of Rayleigh waves in a rotating orthotropic material elastic half-space under initial stress and gravity", J. Mech. Sci. Technol., 26(9), 2815-2823. https://doi.org/10.1007/s12206-012-0736-5   DOI
44 Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", Zeitschrift fur Angewandte Mathematik und Physik., 19(4), 614-627. https://doi.org/10.1007/BF01594969   DOI
45 Chen, P.J., Gurtin, M.E. and Williams, W.O. (1968), "A note on non-simple heat conduction", Zeitschrift fur Angewandte Mathematik und Physik ZAMP, 19(4), 969-970. https://doi.org/10.1007/BF01602278   DOI
46 Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., Int. J., 27(4), 439-451. https://doi.org/10.12989/scs.2018.27.4.439
47 Kumar, R., Sharma, N. and Lata, P. (2016c), "Thermomechanical interactions in transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Model., 40, 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061   DOI
48 Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017), "Rayleigh waves in anisotropic magnetothermoelastic medium", Coupl. Syst. Mech., Int. J., 6(3), 317-333. https://doi.org/10.12989/csm.2017.6.3.317
49 Kumar, R., Kaushal, P. and Sharma, R. (2018), "Transversely isotropic magneto-visco thermoelastic medium with vacuum and without energy dissipation", J. Solid Mech., 10(2), 416-434.
50 Lata, P. and Kaur, I. (2019a), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain", Coupl. Syst. Mech., Int. J., 8(1), 55-70. https://doi.org/10.12989/csm.2019.8.1.055
51 Lata, P. and Kaur, I. (2019b), "Study of transversely isotropic thick circular plate due to ring load with two temperature & green nagdhi theory of type-I, II and III", International Conference on Sustainable Computing in Science, Technology & Management (SUSCOM-2019), - Elsevier SSRN., Amity University Rajasthan, Jaipur, India, pp. 1753-1767.
52 Lata, P. and Kaur, I. (2019c), "Thermomechanical Interactions in transversely isotropic thick circular plate with axisymmetric heat supply", Struct. Eng. Mech., Int. J., 69(6), 607-614. http://dx.doi.org/10.12989/sem.2019.69.6.607
53 Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5   DOI
54 Lata, P. and Kaur, I. (2019d), "Transversely isotropic magneto thermoelastic solid with two temperature and without energy dissipation in generalized thermoelasticity due to inclined load", SN Appl. Sci., 1(5), 426. https://doi.org/10.1007/s42452-019-0438-z   DOI
55 Lata, P. and Kaur, I. (2019e), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., Int. J., 70(2), 245-255. http://dx.doi.org/10.12989/sem.2019.70.2.245
56 Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., Int. J., 22(3), 567-587. http://dx.doi.org/10.12989/scs.2016.22.3.567   DOI
57 Mahmoud, S. (2012), "Influence of rotation and generalized magneto-thermoelastic on Rayleigh waves in a granular medium under effect of initial stress and gravity field", Meccanica, 47, 1561-1579. https://doi.org/10.1007/s11012-011-9535-9   DOI
58 Mahmoud, S.R., Marin, M. and Al-Basyouni, K.S. (2015), "Effect of the initial stress and rotation on free vibrations in transversely isotropic human long dry bone", Analele Universitatii "Ovidius" Constanta-Seria Matematica, 23(1), 171-184. https://doi.org/10.1515/auom-2015-0011   DOI
59 Marin, M. (1996), "Generalized solutions in elasticity of micropolar bodies with voids", Revista de la Academia Canaria de Ciencias, 8(1), 101-106.
60 Marin, M. (1997a), "Cesaro means in thermoelasticity of dipolar bodies", Acta Mech., 122(1-4), 155-168. https://doi.org/10.1007/BF01181996   DOI
61 Marin, M. (1997b), "On weak solutions in elasticity of dipolar bodies with voids", J. Computat. Appl. Math., 82(1-2), 291-297. https://doi.org/10.1016/S0377-0427(97)00047-2   DOI