1 |
Ezzat, M.A., El-Karamany, A.S. and Ezzat, S.M. (2012), "Two-temperature theory in magnetothermoelasticity with fractional order dual-phase-lag heat transfer", Nucl. Eng. Des., 252, 267-277. https://doi.org/10.1016/j.nucengdes.2012.06.012.
DOI
|
2 |
Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and Mahmoud, S.R. (2017), "A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., 13(3), 385-410. https://doi.org/10.12989/gae.2017.13.3.385.
DOI
|
3 |
Fakhrabadi, S.M.M. (2017), "Application of modified couple stress theory and homotopy perturbation method in investigation of electromechanical behaviours of carbon manotubes", Adv. Appl. Math. Mech., 9(1), 23-42. https://doi.org/10.4208/aamm.2014.m71.
DOI
|
4 |
Fang, Y., Li, P. and Wang, Z. (2013), "Thermoelastic damping in the axisymmetric vibration of circular microplate resonators with two dimensional heat conduction", J. Therm. Stress., 36, 830-850. https://doi.org/10.1080/01495739.2013.788406.
DOI
|
5 |
Chen, W., Li, L. and Xu, M. (2011), "A modified couple stress model for bending analysis of composite laminated beams with first order shear deformation", Compos. Struct., 93, 2723-2732. https://doi.org/10.1016/j.compstruct.2011.05.032.
DOI
|
6 |
Yin, L, Qian, Q., Wang, L. and Xia, W. (2010), "Vibration analysis of microscale plates based on modified couple stress theory", Acta Mechanica Solida Sinica, 23(5), 386-393. http://dx.doi.org/101016/S0894-9166(10)60040-7.
DOI
|
7 |
Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
DOI
|
8 |
Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
DOI
|
9 |
Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solid. Struct., 48(18), 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002.
DOI
|
10 |
Karami, B., Janghorban, M. and Tounsi, A. (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
DOI
|
11 |
Kaur, H. and Lata, P. (2020a), "Effect of thermal conductivity on isotropic modified couple stress thermoelastic medium with two temperatures", Steel Compos. Struct., 34(2), 309-319. https://doi.org/10.12989/scs.2020.34.2.309.
DOI
|
12 |
Kaushal, S., Kumar, R. and Miglani, A. (2010), "Response of frequency domain in generalized thermoelasticity with two temperatures", J. Eng. Phys. Thermophys., 83(5), 1080-1088. https://doi.org/10.1007/s10891-010-0433-0.
DOI
|
13 |
Ke, L.L. and Wang, Y. S. (2011), "Size effect on dynamic stability of functionally graded micro beams based on a modified couple stress theory", Compos. Struct., 93, 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008.
DOI
|
14 |
Koiter, W.T. (1964), "Couple-stresses in the theory of elasticity", Proc. Nat. Acad. Sci., 67, 17-44.
|
15 |
Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beam", Int. J. Eng. Sci., 46, 427-437. https://doi.org/10.1016/j.ijengsci.2007.10.002.
DOI
|
16 |
Kumar, R. and Devi, S. (2016), "A problem of thick circular plate in modified couple stress theory of thermoelastic diffusion", Cogent Math., 3(1), 1-14. http://dx.doi.org/10.1080/23311835.2016.1217969.
DOI
|
17 |
Lata, P. and Kaur, H. (2019a), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369.
DOI
|
18 |
Kumar, R., Sharma, N. and Lata, P. (2016b), "Effects of Hall current and two temperatures in transversely isotropic magnetothermoelastic with and without energy dissipation due to ramp type heat", Mech. Adv. Mater. Struct., 24(8),625-635. https://doi.org/10.1080/15376494.2016.1196769.
DOI
|
19 |
Kumar, R., Sharma, N. and Lata, P. (2016a), "Thermomechanical interactions due to Hall current in transversely isotropic thermoelastic medium with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
|
20 |
Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4), 439-451. http://doi.org/10.12989/scs.2018.27.4.439.
DOI
|
21 |
Lata, P. and Kaur, H. (2019), "Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory", Coupl. Syst. Mech., 8(6), 501-522. https://doi.org/10.12989/csm.2019.8.6.501.
DOI
|
22 |
Lata, P. and Kaur, H. (2020), "Effect of two temperature on isotropic modified couple stress thermoelastic medium with and without energy dissipation", Geomech. Eng., 21(5), 461-469. https://doi.org/10.12989/gae.2020.21.5.461.
DOI
|
23 |
Marin, M., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpath. J. Math., 33(2), 219-232.
DOI
|
24 |
Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solid., 56, 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007.
DOI
|
25 |
Ma, H.M., Gao, X.L. and Reddy, J.N. (2011), "A non-classical Mindlin plate model based on a modified couple stress theory", Acta Mechanica, 220(1-4), 217-235. http://doi.org/10.1007/s00707-011-0480-4.
DOI
|
26 |
Abbas, I.A. (2014), "Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity", J. Comput. Theo. Nanosci., 11(4), 987-992. https://doi.org/10.1166/jctn.2014.3454.
DOI
|
27 |
Abbas, I.A. (2016), "Free vibration of a thermoelastic hollow cylinder under two-temperature generalized thermoelastic theory", Mech. Bas. Des. Struct. Mach., 45(3), 395-405. https://doi.org/10.1080/15397734.2016.1231065.
DOI
|
28 |
Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic microcomposite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
DOI
|
29 |
Marin, M. (1998), "Contributions on uniqueness in thermoelastodynamics on bodies with voids", Revista Ciencias Matematicas (Havana), 16(2), 101-109.
|
30 |
Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlin. Anal.: Real World Appl., 10, 1572-1578. https://doi.org/10.1016/j.nonrwa.2008.02.001.
DOI
|
31 |
Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
DOI
|
32 |
Mehralian, F. and TadiBeni, Y. (2017), "Thermo-electromechanical buckling analysis of cylindrical nanoshell on the basis of modified couple stress theory", J. Mech. Sci. Technol., 31(4), 1773-1787. https://doi.org/10.1007/s12206-017-0325-8.
DOI
|
33 |
Othman, M.I.A. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Result. Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012.
DOI
|
34 |
Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
DOI
|
35 |
Arani Ghorbanpour, A., Abdollahian, M. and Jalaei, H.M. (2015), "Vibration of bioliquid-filled microtubules embedded in cytoplasm including surface effects using modified couple stress theory", J. Theo. Biology, 367, 29-38. https://doi.org/10.1016/j.jtbi.2014.11.019.
DOI
|
36 |
Arif, S.M., Biwi, M. and Jahangir, A. (2018), "Solution of algebraic lyapunov equation on positive-definite hermitian matrices by using extended Hamiltonian algorithm", Comput. Mater. Continua, 54, 181-195.
|
37 |
Othman, M.I.A. and Abbas, I.A. (2012), "Generalized thermoelasticity of thermal-shock problem in a nonhomogeneous isotropic hollow cylinder with energy dissipation", Int. J. Thermophys., 33(5), 913-923. https://doi.org/10.1007/s10765-012-1202-4.
DOI
|
38 |
Othman, M.I.A., Atwa, S.Y., Jahangir, A. and Khan, A. (2013), "Generalized magneto-thermo-microstretch elastic solid under gravitational effect with energy dissipation", Multidisc. Model. Mater. Struct., 9(2), 145-176. https://doi.org/10.1108/MMMS-01-2013-0005.
DOI
|
39 |
Atanasov, M.S., Karlicic, D., Kozic, P. and Janevski, G. (2017), "Thermal effect on free vibration and buckling of a double-microbeam system", Facta Universitatis, Series: Mech. Eng., 15(1), 45-62. https://doi.org/10.22190/FUME161115007S.
DOI
|
40 |
Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "Asimple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
DOI
|
41 |
Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
DOI
|
42 |
Press, W.H., Teukolsky, S.A., Vellerling, W.T. and Flannery, B.P. (1986), Numerical Recipe, Cambridge University Press.
|
43 |
Othman, M.I.A., Atwa, S.Y., Jahangir, A. and Khan, A. (2015), "The effect of gravity on plane waves in a rotating thermo-microstretch elastic solid for a mode-I crack with energy dissipation", Mech. Adv. Mater. Struct., 22(11), 945-955. https://doi.org/10.1080/15376494.2014.884657.
DOI
|
44 |
Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16, 2355. https://doi.org/10.1088/0960-1317/16/11/015.
DOI
|
45 |
Park, S.K. and Gao, X.L. (2008), "Variational formulation of a modified couple stress theory and its application to a simple shear problem", Zeitschrift fürAngewandte Mathematik und Physik, 59, 904-917.
DOI
|
46 |
Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22(2), 107-117.
|
47 |
Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206. http://dx.doi.org/10.12989/anr.2019.7.3.191.
DOI
|
48 |
Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
DOI
|
49 |
Chen, W. and Li, X. (2014), "A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model", Arch. Appl. Mech., 84(3), 323-341. https://doi.org/10.1007/s00419-013-0802-1. https://doi.org/10.1007/s00419-013-0802-1.
DOI
|
50 |
Rafiq, M., Singh, B., Arifa, S., Nazeer, M., Usman, M., Arif, S., Bibi, M. and Jahangir, A. (2019), "Harmonic waves solution in dual-phase-lag magneto-thermoelasticity", Open Phys., 17(1), 8-15. https://doi.org/10.1515/phys-2019-0002.
DOI
|
51 |
Simsek, M., Kocaturk, T. and Akbas, S.D. (2013), "Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory", Compos. Struct., 95, 740-747. http://doi.org/10.1016/j.compstruct.2012.08.036.
DOI
|
52 |
Slaughter, W.S (2002), The Linearised theory of Elasticity, Birkhausar.
|
53 |
Sobhy, M. and Radwan, A.F. (2017), "A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates", Int. J. Appl. Mech., 9(1), 1750008-29. https://doi.org/10.1142/S1758825117500089.
DOI
|
54 |
Tsiatas, G.C. and Katsikadelis, J.T. (2009), "A BEM solution to the Saint-Venant torsion problem of microbar", Advances in Boundary Element TechniquesX, Eds. Sapountzakis, E.J. and Aliabadi, M.H., EC Ltd Publications, Eastleigh, UK, July.
|
55 |
Cosserat, E. and Cosserat, F. (1909), Theory of Deformable Bodies, Hermann et Fils, Paris, France.
|
56 |
El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi A. and Mahmoud S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
DOI
|
57 |
Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2017), "Two-temperature theory in Green-Naghdi thermoelasticity with fractional phase-lag heat transfer", Microsyst. Technol., 24(2), 951-961. https://doi.org/10.1007/s00542-017-3425-6.
DOI
|
58 |
Tsiatas, G.C. (2009), "A new Kirchhoff plate model based on a modified couple stress theory", Int. J. Solid. Struct., 46, 2757-2764. https://doi.org/10.1016/j.ijsolstr.2009.03.004.
DOI
|