Browse > Article
http://dx.doi.org/10.12989/csm.2019.8.3.219

Thermomechanical interactions in a transversely isotropic magneto thermoelastic solids with two temperatures and rotation due to time harmonic sources  

Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University)
Kaur, Iqbal (Department of Basic and Applied Sciences, Punjabi University)
Publication Information
Coupled systems mechanics / v.8, no.3, 2019 , pp. 219-245 More about this Journal
Abstract
The present research deals in two dimensional (2D) transversely isotropic magneto generalized thermoelastic solid without energy dissipation and with two temperatures due to time harmonic sources in Lord-Shulman (LS) theory of thermoelasticity. The Fourier transform has been used to find the solution of the problem. The displacement components, stress components and conductive temperature distribution with the horizontal distance are calculated in transformed domain and further calculated in the physical domain numerically. The effect of two temperature are depicted graphically on the resulting quantities.
Keywords
transversely isotropic Magneto thermoelastic; nechanical and thermal stresses; inclined load; time harmonic source;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Modeling a microstretch thermoelastic body with two temperatures", Abstract Appl. Anal., 1-7. http://dx.doi.org/10.1155/2013/583464.
2 Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quart. Appl. Math., 31, 115-125. https://doi.org/10.1090/qam/99708.   DOI
3 Shahani, A.R. and Torki, H.S. (2018), "Determination of the thermal stress wave propagation in orthotropic hollow cylinder based on classical theory of thermoelasticity", Continuum Mech. Thermodyn., 30(3), 509-527. https://doi.org/10.1007/s00161-017-0618-2.   DOI
4 Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22(2), 107-117.
5 Singh, B. and Yadav, A.K. (2012), "Plane waves in a transversely isotropic rotating magnetothermoelastic medium", J. Eng. Phys. Thermophys., 85(5), 1226-1232. https://doi.org/10.1007/s10891-012-0765-z.   DOI
6 Slaughter, W.S. (2002), The Linearised Theory of Elasticity, Birkhausar, Switzerland.
7 Vinyas, M. and Kattimani, S.C. (2017), "Multiphysics response of magneto-electro-elastic beams in thermomechanical environment", Coupled Syst. Mech., 6(3), 351-367. https://doi.org/10.12989/csm.2017.6.3.351.   DOI
8 Abd-Alla, A.E.N.N. and Alshaikh, F. (2015), The Mathematical Model of Reflection of Plane Waves in a Transversely Isotropic Magneto-Thermoelastic Medium under Rotation, in New Developments in Pure and Applied Mathematics, 282-289.
9 Ailawalia, P., Kumar, S. and Pathania, D. (2010), "Effect of rotation in a generalized thermoelastic medium with two temperature under hydrostatic initial stress and gravity", Multidis. Model. Mater. Struct., 6(2), 185-205.   DOI
10 Akbas, S.D. (2017), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.   DOI
11 Atwa, S.Y. (2014), "Generalized magneto-thermoelasticity with two temperature and initial stress under Green-Naghdi theory", Appl. Math. Model., 38(21-22), 5217-5230. https://doi.org/10.1016/j.apm.2014.04.023.   DOI
12 Kumar, R., Sharma, N. and Lata, A.P. (2016), "Effects of Hall current in a transversely isotropic magnetothermoelastic with and without energy dissipation due to normal force", Struct. Eng. Mech., 57(1), 91-103. http://dx.doi.org/10.12989/sem.2016.57.1.091.   DOI
13 Bijarnia, R. and Singh, B. (2016), "Propagation of plane waves in a rotating transversely isotropic two temperature generalized thermoelastic solid half-space with voids", Int. J. Appl. Mech. Eng., 21(1), 285-301. https://doi.org/10.1515/ijame-2016-0018.   DOI
14 Ezzat, M.A., Karamany, A.S. and El-Bary, A.A. (2017), "Thermoelectric viscoelastic materials with memory-dependent derivative", Smart Struct. Syst., 19(5), 539-551. https://doi.org/10.12989/sss.2017.19.5.539.   DOI
15 Green, A. and Naghdi, P. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stresses, 15(2), 253-264. https://doi.org/10.1080/01495739208946136.   DOI
16 Hassan, M., Marin, M., Alsharif, A. and Ellahi, R. (2018), "Convective heat transfer flow of nanofluid in a porous medium over wavy surface", Phys. Lett. A, 382(38), 2749-2753. https://doi.org/10.1016/j.physleta.2018.06.026.   DOI
17 Jr., D.S., Goncalves, K.A. and Telles, J.C. (2015), "Elastodynamic analysis by a frequency-domain FEMBEM iterative coupling procedure", Coupled Syst. Mech., 4(3), 263-277. https://doi.org/10.12989/csm.2015.4.3.263.   DOI
18 Keivani, A., Shooshtari, A. and Sani, A.A. (2014), "Forced vibration analysis of a dam-reservoir interaction problem in frequency domain", Coupled Syst. Mech., 3(4), 385-403. https://doi.org/10.12989/csm.2014.3.4.385.   DOI
19 Kumar, R., Kaushal, P. and Sharma, R. (2018), "Transversely isotropic magneto-visco thermoelastic medium with vacuum and without energy dissipation", J. Solid Mech., 10(2), 416-434.
20 Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions in transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Model., 40, 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061.   DOI
21 Marin, M. (1997), "Cesaro means in thermoelasticity of dipolar bodies", Acta Mechanica, 122(1-4), 155-168. https://doi.org/10.1007/BF01181996.   DOI
22 Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, A.S. (2017), "Rayleigh waves in anisotropic magnetothermoelastic medium", Coupled Syst. Mech., 6(3), 317-333. https://doi.org/10.12989/csm.2017.6.3.317.   DOI
23 Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4), 439-451. https://doi.org/10.12989/scs.2018.27.4.439.   DOI
24 Lata, P. and Kaur, I. (2019), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain", Coupled Syst. Mech., 8(1), 55-70. https://doi.org/10.12989/csm.2019.8.1.055.   DOI
25 Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., 22(3), 567-587. https://doi.org/10.12989/scs.2016.22.3.567.   DOI
26 Lord, H.W. and Shulman, A.Y. (1967), "The generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.   DOI
27 Marin, M. (1997), "On weak solutions in elasticity of dipolar bodies with voids", J. Comput. Appl. Math., 82(1-2), 291-297.   DOI
28 Marin, M. (1998), "Contributions on uniqueness in thermoelastodynamics on bodies with voids", Revista Ciencias Matematicas, 16(2), 101-109.
29 Marin, M. (2008), "Weak solutions in elasticity of dipolar porous materials", Math. Prob. Eng., 1-8.
30 Marin, M. (2016), "An approach of a heat flux dependent theory for micropolar porous media", Meccan., 51(5), 1127-1133. https://doi.org/10.1007/s11012-015-0265-2.   DOI
31 Marin, M. and O chsner, A. (2017), "The effect of a dipolar structure on the Holder stability in Green-Naghdi thermoelasticity", Continuum. Mech. Thermodyn., 29(6), 1365-1374. https://doi.org/10.1007/s00161-017-0585-7.   DOI
32 Ezzat, M., El-Karamany, A. and El-Bary, A. (2016), "Generalized thermoelasticity with memory-dependent derivatives involving two temperatures", Mech. Adv. Mater. Struct., 23(5), 545-553. https://doi.org/10.1080/15376494.2015.1007189.   DOI
33 Chauthale, S. and Khobragade, N.W. (2017), "Thermoelastic response of a thick circular plate due to heat generation and its thermal stresses", Global J. Pure Appl. Math., 13(10), 7505-7527.
34 Dhaliwal, R. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustan Publication Corporation, New Delhi, India.
35 Ezzat, M. and AI-Bary, A. (2016), "Magneto-thermoelectric viscoelastic materials with memory dependent derivatives involving two temperature", Int. J. Appl. Electrom. Mech., 50(4), 549-567. https://doi.org/10.3233/JAE-150131.
36 Ezzat, M. and AI-Bary, A. (2017), "Fractional magneto-thermoelastic materials with phase lag Green-Naghdi theories", Steel Compos. Struct., 24(3), 297-307. https://doi.org/10.12989/scs.2017.24.3.297.   DOI
37 Ezzat, M., El-Karamany, A. and El-Bary, A. (2015), "Thermo-viscoelastic materials with fractional relaxation operators", Appl. Math. Model., 39(23), 7499-7512. https://doi.org/10.1016/j.apm.2015.03.018.   DOI
38 Ezzat, M.A. and El-Bary, A.A. (2017), "A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer", Steel Compos. Struct., 25(2), 177-186. https://doi.org/10.12989/scs.2017.25.2.177.   DOI
39 Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2017), "Two-temperature theory in Green-Naghdi thermoelasticity with fractional phase-lag heat transfer", Microsyst. Technol., 24(2), 951-961. https://doi.org/10.1007/s00542-017-3425-6.   DOI
40 Ezzat, M.A., El-Karamany, A.S. and Ezzat, S.M. (2012), "Two-temperature theory in magnetothermoelasticity with fractional order dual-phase-lag heat transfer", Nucl. Eng. Des., 252, 267-277. https://doi.org/10.1016/j.nucengdes.2012.06.012.   DOI