• 제목/요약/키워드: time bound optimization

검색결과 82건 처리시간 0.022초

선형행렬부등식을 이용한 시간지연 특이시스템의 보장비용 제어기 설계방법 (Guaranteed Cost Controller Design Method for Singular Systems with Time Delays using LMI)

  • 김종해
    • 전자공학회논문지SC
    • /
    • 제40권3호
    • /
    • pp.99-108
    • /
    • 2003
  • 본 논문에서는 시변 시간지연을 가지는 특이시스템에 대한 보장비용 상태제환 제어기 설계방법을 제시한다. 보장비용 제어기가 존재할 충분조건과 보장비용 제어기 설계방법 및 보장비용 함수의 상한치를 구하는 최적화 문제를 선형행렬부등식, 특이치 분해(singular value decomposition), 슈어 여수(Schur complements) 정리, 변수 치환 등에 의하여 제시한다. 구한 충분조건은 선형행렬부등식의 형태로 되기 때문에 보장비용 제어기의 이득과 보장비용 함수의 상한치를 포함하는 충분조건의 모든 해를 동시에 구할 수 있다, 또한, 제안한 알고리듬을 이용하면 변수 불확실성과 시변 시간지연을 동시에 가지는 특이시스템에 대한 강인 보장비용 제어기 설계문제에도 쉽게 확장됨을 보인다. 마지막으로, 제안한 알고리듬의 타당성을 수치예제를 통하여 확인한다.

Dynamic Output-Feedback Receding Horizon H$_{\infty}$ Controller Design

  • Jeong, Seung-Cheol;Moon, Jeong-Hye;Park, Poo-Gyeon
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권4호
    • /
    • pp.475-484
    • /
    • 2004
  • In this paper, we present a dynamic output-feedback receding horizon $H_{\infty}$controller for linear discrete-time systems with disturbance. The controller is obtained numerically from the finite horizon output-feedback $H_{\infty}$optimization problem, which is, in fact, hardly solved analytically. Under a matrix inequality condition on the terminal weighting matrix, the monotonic decreasing property of the cost is shown. This property guarantees both the closed-loop stability and the $H_{\infty}$norm bound. Then, we extend the proposed design method to a reference tracking problem and a problem for time-varying systems. Numerical examples are given to illustrate the performance of the proposed controller.

진화전략과 입력제약조건에 의한 시변스위칭면의 가변구조제어기 설계 (Variable Structure Controller with Time-Varying Switching Surface under the Bound of Input using Evolution Strategy)

  • 이민정;김현식;최영규;전성즙
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권4호
    • /
    • pp.402-409
    • /
    • 1999
  • Variable structure control law is well known to be a robust control algorithm and evolution strategy is used as an effective search algorithm in optimization problems. In this paper, we propose a variable structure controller with time-varying switching surface. We calculate the maximum value of seitching surface gradient that is of the 3rd order polynomial form. Evolution strategy is used to optimize the parameters of the switching surface gradient. Finally, the proposed method is applied to position tracking control for BLDC motor. Experimental results show that the proposed method is more useful than the conventional variable structure controller.

  • PDF

시간지연을 가지는 변수 불확실성 특이시스템의 비약성 강인 보장비용 제어 (Robust Non-fragile Guaranteed Cost Control for Uncertain Descriptor Systems with State Delay)

  • 김종해
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1491-1497
    • /
    • 2007
  • This paper considers robust and non-fragile guaranteed cost controller design method for descriptor systems with parameter uncertainties and time delay, and static state feedback controller with gain variations. The existence condition of controller, the design method of controller, the upper bound to minimize guaranteed cost function, and the measure of non-fragility in controller are proposed using linear matrix inequality (LMI) technique, which can be solved efficiently by convex optimization. Therefore, the presented robust and non-fragile guaranteed cost controller guarantees the asymptotic stability and non-fragility of the closed loop systems in spite of parameter uncertainties, time delay, and controller fragility.

컨테이너선의 적재계량에 관한 연구 (On the Loading Plan of Container Ship)

  • 강기중;이철영
    • 한국항해학회지
    • /
    • 제14권4호
    • /
    • pp.1-15
    • /
    • 1990
  • With increasing ship's speed turnround and port time becomes a large percentage of total roundtrip time and this causes to accelerate the introduction of the various kind of modern handling equipment, the standardization of cargoes, and the improvement of the ship. However, it is still a drag on efficient operation of ship. Similarly, the turnround time at the container port is very important as a measure for the decision of the efficiency of port. To decrease operating coasts, the minimization of the time need to cargo handling at the ports of call must be achieved. Thus the optimization of the time need to cargo handling at the ports of call must be achieved. Thus the optimized Container Loading Plan is necessary, especially under the rapid speed of container operations. For the container loading plan, in this thesis, we use the hungarian method and the branch and bound method to get the initial disposition of both maximization of ship's GM and minimization of shift number to the obstructive container in a yard area. We apply the dynamic programming algorithm to get the final disposition for minimizing total turnroudn time and finally we analyzed the results to check whether the initial disposition is proper or not.

  • PDF

개선된 동적 타임 워핑 알고리즘을 이용한 효율적인 필기문자 감정 (Efficient Handwritten Character Verification Using an Improved Dynamic Time Warping Algorithm)

  • 장석우;박영재;김계영
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권7호
    • /
    • pp.19-26
    • /
    • 2010
  • 본 논문에서는 온라인 환경에서 필기 문자열을 입력받고, 입력된 문자열의 유사성을 자동으로 분석하여 두 필적이 동일인에 의해 작성된 것인지를 판단하는 새로운 필적 감정 방법을 제안한다. 제안된 방법에서는 먼저 온라인으로 입력된 문자열에 회전 프로젝션(circular projection) 방법을 적용하여 모양, 방향 등과 같이 문자열이 가진 고유의 특징을 추출하여 벡터의 형태로 저장한다. 그런 다음, 문자 인식 분야에서 많이 사용되는 기존의 동적 타임 워핑 알고리즘을 개선하여, 이를 입력된 두 문자열의 특징 벡터의 유사성을 추출하는데 적용한다. 본 논문에서 개선된 동적 타임 워핑 알고리즘은 최적화 문제에서 좋은 결과를 산출한다고 알려진 분기한정법(branch and bound)의 개념을 기존의 동적 타임 워핑 알고리즘에 효과적으로 결합함으로써 기존의 동적 타임 워핑 알고리즘의 효율을 향상시켰다. 제안된 필기 문자열 감정 알고리즘의 성능을 확인하기 위한 실험에서는 다양하게 입력된 필기 문자열을 가지고 제안된 방법의 성능을 비교 하였으며, 그 결과 제안된 방법이 기존의 알고리즘에 비해 보다 효율적으로 필적을 감정하였음을 검증하였다.

Joint Optimization of Mobile Charging and Data Gathering for Wireless Rechargeable Sensor Networks

  • Tian, Xianzhong;He, Jiacun;Chen, Yuzhe;Li, Yanjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권7호
    • /
    • pp.3412-3432
    • /
    • 2019
  • Recent advances in radio frequency (RF) power transfer provide a promising technology to power sensor nodes. Adoption of mobile chargers to replenish the nodes' energy has recently attracted a lot of attention and the mobility assisted energy replenishment provides predictable and sustained power service. In this paper, we study the joint optimization of mobile charging and data gathering in sensor networks. A wireless multi-functional vehicle (WMV) is employed and periodically moves along specified trajectories, charge the sensors and gather the sensed data via one-hop communication. The objective of this paper is to maximize the uplink throughput by optimally allocating the time for the downlink wireless energy transfer by the WMV and the uplink transmissions of different sensors. We consider two scenarios where the WMV moves in a straight line and around a circle. By time discretization, the optimization problem is formulated as a 0-1 programming problem. We obtain the upper and lower bounds of the problem by converting the original 0-1 programming problem into a linear programming problem and then obtain the optimal solution by using branch and bound algorithm. We further prove that the network throughput is independent of the WMV's velocity under certain conditions. Performance of our proposed algorithm is evaluated through extensive simulations. The results validate the correctness of our proposed theorems and demonstrate that our algorithm outperforms two baseline algorithms in achieved throughput under different settings.

연속적인 최대-최소 연결비율 문제: 회선망에서의 공정성 및 효율성을 보장하는 경로설정 (Successive Max-min Connection-Ratio Preoblem:Routing with Fairness and Efficiency in Circuit Telecommunication Networks)

  • 박구현;우재현
    • 한국경영과학회지
    • /
    • 제22권2호
    • /
    • pp.13-29
    • /
    • 1997
  • This paper considers a new routing problem, successive max-min connection ratio problem (SMCRP), arised in circuit telecommunication networks such as SONET and WDM optical transport network. An optimization model for SMCRP is established based on link-flow formulation. It's first optimization process is an integral version of maximum concurrent flow problem. Integer condition does not give the same connection-ratio of each node-pair at an optimal solution any more. It is also an integral multi-commodity flow problem with fairness restriction. In order to guarantee fairness to every node-pair the minimum of connection ratios to demand is maximized. NP- hardness of SMCRP is proved and a heuristic algorithm with polynomial-time bound is developed for the problem. Augmenting path and rerouting flow are used for the algorithm. The heuristic algorithm is implemented and tested for networks of different sizes. The results are compared with those given by GAMS/OSL, a popular commercial solver for integer programming problem.n among ferrite-pearlite matrix, the increase in spheroidal ratio with increasing fatigue limitation, 90% had the highest, 14.3% increasing more then 70%, distribution range of fatigue.ife was small in same stress level. (2) $\sqrt{area}_{max}$ of graphite can be used to predict fatigue limit of Ductile Cast Iron. The Statistical distribution of extreme values of $\sqrt{area}_{max}$ may be used as a guideline for the control of inclusion size in the steelmaking.

  • PDF

Utility Bounds of Joint Congestion and Medium Access Control for CSMA based Wireless Networks

  • Wang, Tao;Yao, Zheng;Zhang, Baoxian;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권1호
    • /
    • pp.193-214
    • /
    • 2017
  • In this paper, we study the problem of network utility maximization in a CSMA based multi-hop wireless network. Existing work in this aspect typically adopted continuous time Markov model for performance modelling, which fails to consider the channel conflict impact in actual CSMA networks. To maximize the utility of a CSMA based wireless network with channel conflict, in this paper, we first model its weighted network capacity (i.e., network capacity weighted by link queue length) and then propose a distributed link scheduling algorithm, called CSMA based Maximal-Weight Scheduling (C-MWS), to maximize the weighted network capacity. We derive the upper and lower bounds of network utility based on C-MWS. The derived bounds can help us to tune the C-MWS parameters for C-MWS to work in a distributed wireless network. Simulation results show that the joint optimization based on C-MWS can achieve near-optimal network utility when appropriate algorithm parameters are chosen and also show that the derived utility upper bound is very tight.

Energy-Aware QoS Provisioning for Wireless Sensor Networks: Analysis and Protocol

  • Alam, Muhammad Mahbub;Razzaque, Abdur;Mamun-Or-Rashid, Mamun-Or-Rashid;Hong, Choong-Seon
    • Journal of Communications and Networks
    • /
    • 제11권4호
    • /
    • pp.390-405
    • /
    • 2009
  • Wireless sensor networks (WSNs) are envisioned to facilitate information gathering for various applications and depending on the application types they may require certain quality of service (QoS) guarantee for successful and guaranteed event perception. Therefore, QoS in WSNs is an important issue and two most important parameters that hinder the goal of guaranteed event perception are time-sensitive and reliable delivery of gathered information, while a minimum energy consumption is desired. In this paper, we propose an energy-aware, multi-constrained and multipath QoS provisioning mechanism for WSNs based on optimization approach. Hence, a detailed analytical analysis of reliability, delay and energy consumption is presented to formulate the optimization problem in an analytical way. A greedy algorithm is proposed to achieve the desired QoS guarantee while keeping the energy consumption minimum. Also, a simple but efficient retransmission mechanism is proposed to enhance the reliability further, while keeping the delay within delay bound. Simulation results demonstrate the effectiveness of our scheme.