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Abstract 

 
Recent advances in radio frequency (RF) power transfer provide a promising technology to 
power sensor nodes. Adoption of mobile chargers to replenish the nodes’ energy has recently 
attracted a lot of attention and the mobility assisted energy replenishment provides predictable 
and sustained power service. In this paper, we study the joint optimization of mobile charging 
and data gathering in sensor networks. A wireless multi-functional vehicle (WMV) is 
employed and periodically moves along specified trajectories, charge the sensors and gather 
the sensed data via one-hop communication. The objective of this paper is to maximize the 
uplink throughput by optimally allocating the time for the downlink wireless energy transfer 
by the WMV and the uplink transmissions of different sensors. We consider two scenarios 
where the WMV moves in a straight line and around a circle. By time discretization, the 
optimization problem is formulated as a 0-1 programming problem. We obtain the upper and 
lower bounds of the problem by converting the original 0-1 programming problem into a linear 
programming problem and then obtain the optimal solution by using branch and bound 
algorithm. We further prove that the network throughput is independent of the WMV’s 
velocity under certain conditions. Performance of our proposed algorithm is evaluated through 
extensive simulations. The results validate the correctness of our proposed theorems and 
demonstrate that our algorithm outperforms two baseline algorithms in achieved throughput 
under different settings. 
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1. Introduction 

For traditional battery-powered sensor networks, their lifetime is limited by battery capacity. 
It is often difficult or impossible to replace the batteries after deployment, especially when the 
system is deployed in harsh and unattended environment. Although energy efficiency has been 
extensively studied in sensor networks [1], the problem of limited lifetime cannot be 
completely resolved only by saving energy [2][3]. Recent advances in radio frequency (RF) 
power transfer provide a promising technology to power these sensor nodes [4][5][6][7][8]. 
By this technology, a node can convert part of the received signal power into electricity. 
Depending on the transmit power of the wireless charger and the distance between the charger 
and the receiver, a node can harvest from some μW to some mW of power [9][10]. To provide 
stable and reliable power supply for sensor networks, adoption of mobile chargers to replenish 
the nodes’ energy has recently attracted a lot of attention in the research community 
[11][12][13]. Different from traditional energy harvesting sensor networks using solar panels 
or wind turbines, where the harvested energy is dynamic in both spatial and temporal 
dimensions [12], the mobility assisted energy replenishment provides predictable and 
sustained power service.  

In addition to harvesting environmental energy to maintain the survival of the network, how 
to gather sensed data is also one of the most important tasks in sensor networks [11]. There is 
some work investigating relay-routing based data gathering to a static data sink in energy 
harvesting sensor networks [13]. However, such a scheme may lead to non-uniform energy 
consumption among all the sensors and more congestion and packet loss at the sensors closer 
to the static sink. To overcome these problems, mobile data gathering has been proposed 
recently [11][14]. Specifically, one or more mobile sinks are employed to gather data from 
sensors through only one hop. This approach can effectively eliminate the non-uniformity of 
energy consumption among sensors and alleviate the traffic burden of sensors closer to the 
sink.  

In this paper, we study the joint optimization of mobile charging and data gathering in 
sensor networks. A wireless multi-functional vehicle (WMV) is employed, which is equipped 
with a powerful transceiver and high capacity battery. It periodically moves along specified 
trajectories, charge the sensors and gather the sensed data via one-hop communication. This 
way, the WMV serves as both a wireless charger and a mobile data collector. Unlike prior 
work on SWIPT [15], which focused on the simultaneous energy and information 
transmissions to users in the downlink (DL), we consider a different setup where the WMV 
broadcasts only wireless energy to nearby sensors in the DL while the sensors transmit their 
independent sensed data using their individually harvested energy to the WMV in the uplink 
(UL). We are interested in maximizing the UL throughput by optimally allocating the time for 
the DL wireless energy transfer by the WMV and the UL transmissions of different sensors. 

The main contributions of this paper are summarized as follows: 
1) We study the joint optimization of mobile charging and data gathering problem under 

two scenarios that the WMV moves in a straight line and around a circle. By time 
discretization, the problem is formulated as a 0-1 programming problem.  

2) We first omit the integer constraint and convert the original 0-1 programming 
problem into a linear programming problem. Then we adopt relax-and-fix algorithm 
and obtain the upper bound and lower bound of the original problem. Finally, we 
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obtain the optimal solution by using branch-and-bound algorithm.  
3) We further study the relationship between the network throughput and the velocity of 

the WMV. We prove that the network throughput is independent of the WMV’s 
velocity under certain conditions. 

4) We evaluate the performance of our proposed algorithm through extensive 
simulations, and the results validate the correctness of our proposed theorems and 
demonstrate that our algorithm outperforms two baseline algorithms in achieved 
throughput under different settings. 

The rest of this paper is organized as follows. In Section 2, we present related work. Section 
3 introduces the system model. In Section 4, we formally formulate the problem under the 
scenario that the WMV moves in a straight line and propose algorithms to solve the problem. 
Section 5 extends the problem to the scenario that the WMV moves around a circle. Section 6 
presents the evaluation results obtained through simulations, and we conclude the paper in 
Section 7. 

2. Related Work 
In recent years, the technology of RF energy harvesting has been developed rapidly. By this 
technology, sensor nodes can harvest power from ambient RF signals or from dedicated RF 
chargers. Compared to ambient RF energy [16][17] or using fixed chargers [10], it is more 
flexible to use mobile RF chargers. Among the studies of adopting mobile RF chargers, most 
are devoted to maximizing the charging efficiency. For example, Ye et al. study the problem of 
maximizing the charging utility by selecting the proper anchor point of the vehicle [18]. Shu et 
al. propose a suboptimal velocity control strategy for the mobile charger, aiming to maximize 
the harvested energy of nodes [19]. Fu et.al study how to plan the optimal movement strategy 
of the mobile charger, such that the time to charge all nodes in the network above their energy 
threshold is minimized [20]. Li et al optimize the trajectory of the mobile charger, aiming to 
reduce the moving time of the charger so that more time can be allocated to the nodes for 
charging and data collecting [21]. Some work focuses on solving the problem of energy 
imbalance among nodes. For example, Han et al. design the residence time of each layer of the 
transmitter through the grid model to achieve smaller variance of the node’s residual energy 
[22]. Salarian et al. propose a path selection strategy for mobile sink to optimize the energy 
balance of nodes [23]. 

In addition to harvesting energy to prolong network lifetime, how to gather sensed data is 
one of the most important issues in WSNs. Among the studies of this problem, most are 
devoted to maximizing the network throughput. For example, Zhang et al. formulate a data 
gathering problem with the objective of maximizing the network utility in a rechargeable 
wireless sensor network with a mobile sink, where the network utility is related to the amount 
of sensed, transmitted and received data [11]. Mehrabi et al. optimize the time to transmit data 
for each node by considering two adjacent slot energy constraint to increase the network 
throughput [24]. According to the communication quality between each sensor and the hybrid 
access point, Ju and Zhang assign the charging time and the data transmission time of each 
node to maximize the sum-throughput and common-throughput [25]. They further reduce the 
energy imbalance between nodes by cooperation among nodes [26]. 

However, very few researches focus on joint optimization of mobile charging and data 
gathering. For instance, Guo et. al provide a distributed and adaptive solution that jointly 
selects the sensors to be recharged, finds the optimal data generating and uploading rates and 
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the optimal scheduling and routing paths for each node, and determines the optimal sojourn 
time for the mobile collector at each anchor point, such that the overall network utility can be 
maximized [14]. Zhang et.al study data gathering problem in rechargeable sensor networks 
with a mobile sink, where rechargeable sensors are deployed into a region of interest to 
monitor the environment and a mobile sink travels along a pre-defined path to collect data 
from sensors periodically. However, the sensors in their study are powered by solar cell and 
rechargeable batteries, not by a RF charger [11]. Our work is different from the above work. 
First, we introduce a WMV which can function as both a wireless charger and a data collector. 
Second, we consider a relatively small sensor network, where the sensors can communicate 
with the WMV in one hop. Third, we assume the WMV is moving continuously along a 
predetermined path, a straight line or a circle, through the network without stops. In the 
scenario that the WMV stays at some anchor points to charge the sensors and collect data, 
there are mainly two limitations: first, the anchor points should be carefully chosen so as to 
ensure the efficiency of charging and data collection. Second, the WMV cannot charge the 
sensors and collect data when it is moving. Adoption of the non-stop moving model can avoid 
the above-mentioned two limitations. In practical applications, the WMV can be any 
non-dedicated vehicle in the road. They can charge the sensors at roadside and meanwhile 
collect the sensing data. In practical, the WMV can also move along any route. The reason for 
considering a straight line or a circle in our work is that most complicated routes can be 
approximately decomposed into the two basic motion patterns. The objective of our work is to 
maximize the throughput by optimally allocating the time for the wireless energy transfer by 
the WMV and the transmissions of different sensors. 

3. System Model 
A potential application scenario considered in this paper is given in Fig. 1. This network 
consists of n rechargeable sensor nodes and a WMV in a 2D area. The WMV traverses the 
sensor network at a velocity of v along a straight line, see the dotted line AB in Fig. 1. Suppose 
the length of the segment AB is l and the duration of the WMV moving from A to B is T. We 
further make the following assumptions:  
1) The WMV recharges the sensors with RF energy by broadcasting wireless signals in the 

DL. 
2) The sensors transmit their independent sensed data using their individually harvested 

energy to the WMV in one hop in the UL by time-division-multiple-access (TDMA).  
3) The WMV has only one antenna, so power recharge and data transmission cannot be 

conducted simultaneously.  
4) In the whole process, each node can communicate with the WMV, and the WMV has 

enough energy to recharge the sensors and gather the sensed data from the sensors. 
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Fig. 1. The scenario that the WMV moves in a straight line to charge the sensors and gather data 

 
When the WMV is recharging the sensors, the recharge power of the sensor is mainly 

related to the transmit power of the WMV and the distance between the sensor and the WMV. 
Since the WMV is moving continuously, the distance between the sensor and the WMV is 
varying. As a result, the recharge power of each sensor is dynamic. Thus, the instantaneous 
recharge power at time t (0 ≤ t ≤ T, t = 0 represents the start of the period) of node i is expressed 
as [25]: 

𝑃𝑃(𝑟𝑟)
𝑖𝑖(𝑡𝑡) = 𝜁𝜁𝑖𝑖�𝑖𝑖(𝑡𝑡)𝑃𝑃𝐴𝐴                                                      (1) 

where 0 < ζi <1, i = 1,…,n, is the energy harvesting efficiency of sensor i, PA denotes the 
transmit power of the WMV, and ℎ𝑖𝑖(𝑡𝑡) = 10−3𝜑𝜑𝑖𝑖2𝑑𝑑𝑖𝑖−𝛼𝛼(𝑡𝑡) denotes the channel power gains in 
the DL at time t, where 𝜑𝜑𝑖𝑖  represents the additional channel short-term fading which is 
assumed to be Rayleigh distributed, and thus 𝜑𝜑𝑖𝑖2  is an exponentially distributed random 
variable with unit mean, di(t) is the distance between the WMV and node i at time t, and α 
denotes the path loss exponent which is normally between 2 to 4.  

We assume that any sensor i transmits data to the WMV at a constant power Pi. Then the 
achievable UL throughput of sensor i at time t can be expressed as: 

𝑟𝑟𝑖𝑖(𝑡𝑡) = 𝐵𝐵 log2( 1 + 𝑔𝑔𝑖𝑖(𝑡𝑡)𝑃𝑃𝑖𝑖
𝛤𝛤𝜎𝜎2

)                                               (2) 

where B is the bandwidth, Γ represents the signal-to-noise ratio (SNR) gap from the additive 
white Gaussian noise (AWGN) channel capacity due to a practical modulation and coding 
scheme (MCS) used, σ2 denotes the variance of the noise, and 𝑔𝑔𝑖𝑖(𝑡𝑡) = 10−3𝜑𝜑𝑖𝑖2𝑑𝑑𝑖𝑖−𝛼𝛼(𝑡𝑡) denotes 
the channel power gains in the UL at time t. 

The main notations and their corresponding definitions are summarized in Table 1. 
 

Table 1. List of notations 
Notation Definition 

n Number of sensor nodes 
m Number of slots 
𝜏𝜏 Slot duration 
T Period duration 
l Moving distance when the WMV moves in a straight line 
𝑑𝑑ℎ The radius of the circle when the WMV moves around a circle 
𝑃𝑃𝑖𝑖  Transmit power of sensor i 
𝑃𝑃𝑖𝑖

(𝑟𝑟) Recharge power of sensor i 
𝑟𝑟𝑖𝑖 Throughput of sensor i 

WMV 

sensor  
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𝑃𝑃𝐴𝐴 Transmit power of the WMV 
ℎ𝑖𝑖  Channel power gain in the DL 
𝑔𝑔𝑖𝑖  Channel power gain in the UL 
v Velocity of the WMV when it moves in a straight line 
𝜔𝜔 Angular velocity of the WMV when it moves around a circle 
𝑑𝑑𝑖𝑖  Distance between sensor i and WMV 
𝐸𝐸𝑖𝑖,𝑗𝑗  Energy harvested by node i when it can be charged in slot j 
𝑅𝑅𝑖𝑖,𝑗𝑗  Throughput of sensor i when it can transmit data in slot j 
𝑒𝑒𝑖𝑖,𝑗𝑗  Energy consumed by sensor i when it can transmit data in slot j 
𝑞𝑞𝑖𝑖,𝑗𝑗 Residual energy of sensor i at the end of slot j 
𝑥𝑥𝑖𝑖,𝑗𝑗  An indicator indicating whether sensor i can transmit data or get charged in slot j 
X A matrix denoting the time allocation strategy 
Z Network throughput 

4. Problem Formulation and Solution 
With the aforementioned models, we describe and mathematically formulate our problem in 
this section. 

4.1 Problem formulation 
The objective is to maximize the UL throughput by optimally allocating the time for the DL 
wireless energy transfer by the WMV and the UL transmissions of different sensors during the 
time T when the WMV is moving from A to B. We abbreviate this optimal mobile charging 
and data gathering problem as OMCDG. 

Since the original OMCDG problem is continuous in the time domain. To make the 
problem easier to handle, we discretize the time duration T into m slots and the duration of 
each slot is τ. So, we have 𝑚𝑚𝑚𝑚 = 𝑇𝑇. The Cartesian coordinate system is established by taking A 
as the origin and the AB direction as the positive axis of the x-axis. Accordingly, the 
coordinates of sensor i are (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖). The distance between sensor i and the WMV at time t is 
given by: 

𝑑𝑑𝑖𝑖(𝑡𝑡) = ((𝑣𝑣𝑣𝑣 − 𝑥𝑥𝑖𝑖)2 + 𝑦𝑦𝑖𝑖2)
1
2                                               (3) 

The traversing distance of the WMV in the j-th slot is the accumulated distance in the previous 
j-1 time slots plus the incremental distance in the j-th slot. So, the channel power gain of DL 
and UL for time γ (0 ≤ γ ≤ τ, γ=0 represents the start of one slot) in the j-th (1 ≤ j ≤ m) slot can 
be expressed as: 

�𝑖𝑖,𝑗𝑗(𝛾𝛾) = 𝑔𝑔𝑖𝑖,𝑗𝑗(𝛾𝛾) = 10−3𝜑𝜑𝑖𝑖2(𝑥𝑥′𝑖𝑖2 + 𝑦𝑦𝑖𝑖2)−
𝛼𝛼
2                                     (4) 

where 𝑥𝑥′𝑖𝑖 = 𝑗𝑗𝑗𝑗𝑗𝑗 − 𝑣𝑣𝑣𝑣 + 𝑣𝑣𝑣𝑣 − 𝑥𝑥𝑖𝑖. From (1) and (4), the energy harvested by sensor i when it is 
charging in slot j is given by: 

𝐸𝐸𝑖𝑖,𝑗𝑗 = ∫ 𝜁𝜁𝑖𝑖𝑃𝑃𝐴𝐴�𝑖𝑖,𝑗𝑗(𝛾𝛾)𝑑𝑑𝑑𝑑𝜏𝜏
0                                                 (5) 

Based on (2) and (4), the throughput that sensor i can achieve when it transmits data in slot j is 
given by: 

𝑅𝑅𝑖𝑖,𝑗𝑗 = ∫ 𝐵𝐵 𝑙𝑙𝑙𝑙𝑙𝑙2( 1 +
𝑔𝑔𝑖𝑖,𝑗𝑗(𝛾𝛾)𝑃𝑃𝑖𝑖
𝛤𝛤𝜎𝜎2

)𝑑𝑑𝑑𝑑𝜏𝜏
0                                         (6) 

In addition, the energy consumed by sensor i when it transmits data in slot j is given by: 
𝑒𝑒𝑖𝑖,𝑗𝑗 = 𝑃𝑃𝑖𝑖𝜏𝜏                                                          (7) 
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Let xi,j be an binary indicator indicating whether sensor i can transmit data in slot j. If it 
transmits data in slot j, xi,j = 1. Otherwise xi,j = 0. Specifically, x0,j is to indicate whether the 
WMV can recharge the sensors in slot j. If it recharges the sensors, x0,j = 1, otherwise xi,j = 0. 
Since power recharge and data transmission cannot be conducted simultaneously and the 
transmission follows TDMA, we have: 

∑ 𝑥𝑥𝑖𝑖,𝑗𝑗 = 1𝑛𝑛
𝑖𝑖=0 , 𝑥𝑥𝑖𝑖,𝑗𝑗 ∈ {0,1}, 𝑗𝑗 ∈ {1,2, … ,𝑚𝑚}                           (8) 

Let qi,j be the residual energy of node i at the end of the j-th slot. Specifically, qi,0 represents 
the initial energy of sensor i at the beginning of the period. The harvested and consumed 
energy of sensor i in the j-th slot are x0,jEi,j and xi,jei,j respectively. We assume the battery 
capacity of the sensor is large enough to avoid the case of energy overflow. So, we have: 

𝑞𝑞𝑖𝑖,𝑗𝑗 = 𝑞𝑞𝑖𝑖,𝑗𝑗−1 + 𝑥𝑥0,𝑗𝑗𝐸𝐸𝑖𝑖,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗𝑒𝑒𝑖𝑖,𝑗𝑗                                        (9) 
We further assume that sensor i cannot transmit any data when its residual energy is lower than 
ei,j, which is the energy demand for the transmission in the j-th slot, and thus we have: 

𝑥𝑥𝑖𝑖,𝑗𝑗𝑒𝑒𝑖𝑖,𝑗𝑗 ≤ 𝑞𝑞𝑖𝑖,𝑗𝑗−1, 𝑖𝑖 ∈ {1,2, … ,𝑛𝑛}, 𝑗𝑗 ∈ {1,2, … ,𝑚𝑚}                       (10) 
In summary, the OMCDG problem can be formulated as: 

 max
𝑋𝑋

 𝑍𝑍 =
1
𝑇𝑇
��𝑥𝑥𝑖𝑖,𝑗𝑗

𝑚𝑚

𝑗𝑗=1

𝑅𝑅𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑖𝑖=1

 

 s. t.  ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑛𝑛
𝑖𝑖=0 = 1, 𝑗𝑗 ∈ {1,2, . .𝑚𝑚} , 

 𝑥𝑥𝑖𝑖,𝑗𝑗 ∈ {0,1}, 𝑖𝑖 ∈ {0,1, … ,𝑛𝑛}, 𝑗𝑗 ∈ {1,2, … ,𝑚𝑚},                         (11) 
                                               𝑥𝑥𝑖𝑖,𝑗𝑗𝑒𝑒𝑖𝑖,𝑗𝑗 ≤ 𝑞𝑞𝑖𝑖,𝑗𝑗−1, 𝑖𝑖 ∈ {1,2, . .𝑛𝑛}, 𝑗𝑗 ∈ {1,2, . .𝑚𝑚}, 
where X= �𝑥𝑥0,1, … , 𝑥𝑥𝑛𝑛,1, 𝑥𝑥0,2, … , 𝑥𝑥𝑛𝑛,2, … , 𝑥𝑥0,𝑚𝑚, … , 𝑥𝑥𝑛𝑛,𝑚𝑚�  is solution set of the problem 
including a total of (n+1)m elements.  

4.2 Solution to the problem 
Obviously, the above OMCDG problem is a 0-1 programming problem, which is NP-hard. 
Explicit enumeration is normally impossible due to the exponentially increasing number of 
potential solutions. We first omit the integer constraint and convert the original 0-1 
programming problem into a linear programming (LP) problem. Then we adopt relax-and-fix 
(R&F) algorithm and obtain two feasible solutions corresponding to the upper bound and 
lower bound of the original problem. Branch and bound (B&B) is by far the most widely used 
tool for solving large scale NP-hard combinatorial optimization problems. We obtain the 
optimal solution by using B&B algorithm. 

Specifically, for the OMCDG problem, we first relax the binary variables xi,j from {0,1} to 
real numbers in the range [0,1]. The original problem is then converted into a LP problem. We 
obtain the solution set X  of this LP problem by using CPLEX optimizer [27] and the 
corresponding throughput 𝑍𝑍 is the upper bound of the original problem. Then, we find the 
element with the minimum non-zero value in the solution set 
𝑋𝑋=�𝑥𝑥0,1, … , 𝑥𝑥𝑛𝑛,1,𝑥𝑥0,2, … , 𝑥𝑥𝑛𝑛,2, … , 𝑥𝑥0,𝑚𝑚, … , 𝑥𝑥𝑛𝑛,𝑚𝑚�, and let it be 0 if it does not equal to 1.  A new 
LP problem is thus formulated. We iteratively solve the new LP problem and let the minimum 
non-zero element in respective solution set be 0 until the minimum non-zero element equals to 
1. Finally, we obtain the solution set X and the corresponding throughput 𝑍𝑍 is the lower bound 
of the original problem. The pseudocode of R&F algorithm for obtaining the upper and lower 
bounds of the OMCDG problem is shown in Table 2. 
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Table 2. R&F algorithm for obtaining the upper and lower bounds of the OMCDG problem 

 
Inputs: n, m, 𝑃𝑃𝑖𝑖 ,𝐸𝐸𝑖𝑖,𝑗𝑗,𝑅𝑅𝑖𝑖,𝑗𝑗 
Outputs: The feasible solution 𝑋𝑋, the upper bound 𝑍𝑍, the lower bound 𝑍𝑍 
Relax all 𝑥𝑥𝑖𝑖,𝑗𝑗 from 𝑥𝑥𝑖𝑖,𝑗𝑗 ∈ {0,1} to 𝑥𝑥𝑖𝑖,𝑗𝑗 ∈ [0,1]; 
Calculate the new LP problem using CPLEX get solution 𝑋𝑋 and the upper bound 𝑍𝑍; 
Set ,𝑈𝑈 = 𝑋𝑋 
while 𝑈𝑈 ≠ ∅ do 

Find the minimum non-zero element in U and denote it as 𝑥𝑥𝑎𝑎,𝑏𝑏; 
if 𝑥𝑥𝑎𝑎,𝑏𝑏 = 1, then break;  
end if 
Fix 𝑥𝑥𝑎𝑎,𝑏𝑏 = 0,relax the rest 𝑥𝑥𝑖𝑖,𝑗𝑗 in U; 
Calculate the updated LP problem using CPLEX get solution W; 
Set 𝑈𝑈 = 𝑊𝑊; 

end while 
Set 𝑋𝑋 = 𝑈𝑈 
return 𝑋𝑋,  𝑍𝑍,  𝑍𝑍 

 
Next, we adopt B&B algorithm to obtain the optimal solution of the OMCDG problem. In 

fact, for solving OMCDG problem, we need to determine whether the WMV charges the 
sensors (𝑥𝑥0,𝑗𝑗 = 1) or the sensor transmits data (𝑥𝑥0,𝑗𝑗 = 0), and which sensor transmits the data 
(𝑥𝑥𝑖𝑖,𝑗𝑗 ∈ {0,1}) in each slot. To this end, we generate n+1 branches for each slot when searching 
the solution space, where the first branch represents that WMV charges the sensors, namely, 
{𝑥𝑥0,𝑗𝑗 = 1, 𝑥𝑥𝑖𝑖,𝑗𝑗 = 0, 𝑖𝑖 ≠ 0} and any other branch represents that any sensor i transmits data, 
namely, {𝑥𝑥𝑖𝑖,𝑗𝑗 = 1,𝑥𝑥𝑘𝑘,𝑗𝑗 = 0,𝑘𝑘 ≠ 𝑖𝑖}. Since we have the upper and lower bounds obtained by 
R&F algorithm, we can reduce the searching space by cutting some of the branches and 
updating the upper and lower bounds during the searching process. The details of B&B 
algorithm for solving the OMCDG problem are as follows: In the first slot, we generate n+1 
branches corresponding to the solutions {𝑥𝑥0,1 = 1, 𝑥𝑥𝑖𝑖,1 = 0, 𝑖𝑖 ≠ 0}, {𝑥𝑥1,1 = 1, 𝑥𝑥𝑖𝑖,𝑗𝑗 = 0, 𝑖𝑖 ≠
1}, {𝑥𝑥2,1 = 1,𝑥𝑥𝑖𝑖,𝑗𝑗 = 0, 𝑖𝑖 ≠ 2 }, … , {𝑥𝑥𝑛𝑛,1 = 1, 𝑥𝑥𝑖𝑖,𝑗𝑗 = 0, 𝑖𝑖 ≠ 𝑛𝑛}. We then solve n+1 LP 
problems with fixed solution in the first slot and relaxed variables xi,j (j > 1) in the remaining 
slots, and obtain n+1 solutions and corresponding throughputs. We find the solution 𝑋𝑋max that 
has maximum throughput, denoted by 𝑍𝑍max and let 𝑍𝑍 = 𝑍𝑍max. After that, we check whether 
there exist solutions conforming to the integer constraint. If true, we denote the solution that 
has maximum throughput by 𝑋𝑋max′  and the throughput by 𝑍𝑍max′  and further compare 𝑍𝑍max′  
with current lower bound 𝑍𝑍. If 𝑍𝑍max′ > 𝑍𝑍, let 𝑍𝑍 = 𝑍𝑍max′ , 𝑋𝑋 = 𝑋𝑋max′ .Otherwise, we cut off 
the branches which are unsolvable or whose throughput is no more than current lower bound 𝑍𝑍 
and enter the iteration of the second slot. The iteration terminates when all the slots have been 
visited or 𝑍𝑍 − 𝑍𝑍 ≤ 𝜖𝜖,where 𝜖𝜖 is a small controllable error coefficient. Finally, we obtain the 
optimal solution 𝑋𝑋∗ = 𝑋𝑋 and its corresponding throughput 𝑍𝑍 . The pseudocode of B&B 
algorithm for obtaining the optimal solution of the OMCDG problem is shown in Table 3. 
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Table 3. B&B algorithm for obtaining the optimal solution of the OMCDG problem  
Inputs: n, m, 𝑃𝑃𝑖𝑖 , 𝐸𝐸𝑖𝑖,𝑗𝑗, 𝑅𝑅𝑖𝑖,𝑗𝑗, the feasible solution 𝑋𝑋 
Outputs: The optimum solution 𝑋𝑋∗ 
Set 𝑘𝑘 = 1,𝑠𝑠 = 1 
while 𝑘𝑘 ≤ 𝑚𝑚 do 

Set 𝑠𝑠 = 𝑠𝑠 ∗ (n + 1); 
Fix 𝑥𝑥𝑖𝑖,𝑘𝑘 = 1 for 𝑖𝑖 ∈ {0,1, … ,𝑛𝑛} respectively and structure s branches; 
Solve the LP problem by relaxing elements for the rest slots using CPLEX for every branch and get 
set of solution {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑠𝑠} and throughput {𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑠𝑠}; 
Calculate 𝑍𝑍max = max {𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑠𝑠}and set 𝑍𝑍 = 𝑍𝑍max; 
Find feasible solutions in {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑠𝑠} and find the solution  𝑋𝑋max′  with the maximum throughput 
𝑍𝑍max′  in these feasible solutions; 
if 𝑍𝑍max′ > 𝑍𝑍 

set 𝑍𝑍 = 𝑍𝑍max′ ，𝑋𝑋 = 𝑋𝑋max′ ; 
end if 
if 𝑍𝑍 − 𝑍𝑍 ≤ 𝜖𝜖 

break;  
end if 
Cut off branches which are unsolvable or whose throughput is no more than 𝑍𝑍 and update the number 
of branches s; 
Set k=k+1; 

end while 
𝑋𝑋∗ = 𝑋𝑋 
return 𝑋𝑋∗ 

 
Complexity analysis: Both the number of variables and the number of constraints of the LP 

problem are (𝑚𝑚𝑚𝑚 +𝑚𝑚). It is known that the time complexity of solving LP problems by using 
interior point method is O(𝑚𝑚𝑚𝑚 + 𝑚𝑚)3.5 [28]. Since we need (𝑚𝑚𝑚𝑚 + 𝑚𝑚) loops to obtain the 
feasible solution 𝑋𝑋  under the worst case and the complexity for each loop is O �(𝑚𝑚𝑚𝑚 +

𝑚𝑚)(𝑚𝑚𝑚𝑚 + 𝑚𝑚)3.5�, the complexity of R&F algorithm is O((𝑚𝑚𝑚𝑚 + 𝑛𝑛)5.5). Under the worst case, 
we need (𝑛𝑛 + 1)𝑚𝑚 loops to obtain the optimal solution 𝑋𝑋∗. Obviously, when the number of 
sensors or slots is relatively large, the cost is unaffordable. Since we introduce a small and 
controllable error coefficient 𝜖𝜖, we can jump out of the iteration if  𝑍𝑍 − 𝑍𝑍 ≤ 𝜖𝜖, which results in 
an approximate solution, but can greatly reduce the time complexity.  

4.3 Further discussions 
In this section, we further discuss the relationship between the network throughput and the 
velocity of the WMV by proposing and proving three theorems. 
Theorem 1. If the WMV moves in a straight line with a constant velocity and broadcasts 
power signals continuously, the average harvested power of the sensors is independent of the 
velocity of the WMV given a fixed moving path. 
Proof. Since the WMV broadcasts power signals continuously, sensor i can harvest energy all 
the time when the WMV moves from A to B. Let v be the velocity of the WMV, l be the length 
of the line segment AB, and (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) be the coordinates of sensor i. From (1) and (3), the total 
harvested energy 𝐸𝐸𝑖𝑖 by sensor i can be expressed as 

 
𝐸𝐸𝑖𝑖 = ∫ 10−3𝜁𝜁𝑖𝑖𝜑𝜑𝑖𝑖2𝑃𝑃𝐴𝐴((𝑣𝑣𝑣𝑣 − 𝑥𝑥𝑖𝑖)2＋𝑦𝑦𝑖𝑖2)−

𝛼𝛼
2

𝑇𝑇
0 𝑑𝑑𝑑𝑑                           (12) 
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Let 𝜆𝜆𝑖𝑖 = 10−3𝜁𝜁𝑖𝑖𝜑𝜑𝑖𝑖2𝑃𝑃𝐴𝐴, then the average recharge power is 

𝑃𝑃(𝑟𝑟)
𝑖𝑖 = 𝐸𝐸𝑖𝑖

𝑇𝑇
= 𝜆𝜆𝑖𝑖𝑇𝑇−1 ∫ ((𝑣𝑣𝑣𝑣 − 𝑥𝑥𝑖𝑖)2 + 𝑦𝑦𝑖𝑖2)−

𝛼𝛼
2𝑑𝑑𝑑𝑑𝑇𝑇

0                           (13) 
We further let δ=vt, this way dδ=vdt, and thus (13) is rewritten as: 

𝑃𝑃(𝑟𝑟)
𝑖𝑖 = 𝜆𝜆𝑖𝑖(𝑣𝑣𝑣𝑣)−1 ∫ ((𝛿𝛿 − 𝑥𝑥𝑖𝑖)2 + 𝑦𝑦𝑖𝑖2)−

𝛼𝛼
2𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣

0                              (14) 
Let f(δ)=((δ-xi)2+yi

2)-α/2, and obviously f(δ) is continuous in the range [0,vT]. According to the 
mean value theorems for integrals, there exists a ε∈[0, vT] that satisfies: 

𝑃𝑃(𝑟𝑟)
𝑖𝑖 = 𝜆𝜆𝑖𝑖(𝑣𝑣𝑣𝑣)−1𝑓𝑓(𝜀𝜀)(𝑣𝑣𝑣𝑣 − 0) = 𝜆𝜆𝑖𝑖𝑓𝑓(𝜀𝜀)                               (15) 

Since vT=l is the length of this path, the integral interval [0, vT] is the same for different v. As 
a result, ε and f(ε) are also the same. In other words, f(ε) is independent of v. From (15), we 
prove that the average recharge power of sensor i harvesting from the WMV is independent of 
the velocity v. The theorem follows immediately.  
Theorem 2. Suppose the sensor has sufficient energy and transmits data with a constant 
transmit power to the WMV moving in a straight line with a constant velocity, the throughput 
of the sensor is independent of the velocity of the WMV given a fixed moving path. 

Proof. Let 𝑔𝑔𝑖𝑖(𝑡𝑡) = 10−3𝜑𝜑𝑖𝑖2((𝑣𝑣𝑣𝑣 − 𝑥𝑥𝑖𝑖)2＋𝑦𝑦𝑖𝑖2)−
𝛼𝛼
2, and suppose the transmit power of sensor i 

is Pi, from (2) and (3), the throughput of sensor i can be expressed as: 

𝑟𝑟𝑖𝑖 = 𝐵𝐵𝑇𝑇−1 ∫ log2(1 + 𝑔𝑔𝑖𝑖(𝑡𝑡)𝑃𝑃𝑖𝑖
𝛤𝛤𝜎𝜎2

)𝑇𝑇
0 𝑑𝑑𝑑𝑑

                                     
(16) 

Similar to the proof of theorem 1, the result can be obtained by using the mean value theorems 
for integrals. Let 𝛿𝛿 = 𝑣𝑣𝑣𝑣, 𝑓𝑓′(δ) = log2(1 + 𝑔𝑔𝑖𝑖(𝛿𝛿)𝑃𝑃𝑖𝑖

𝛤𝛤𝜎𝜎2
), we can easily prove that there exists a ε’

∈[0,vT] that satisfies 𝑟𝑟𝑖𝑖 = 𝐵𝐵𝑓𝑓′(𝜀𝜀′) and thus 𝑓𝑓′(𝜀𝜀′) is independent of the velocity v of the 
WMV. The theorem follows immediately. 
Theorem 3. If all the sensors have no initial power and the WMV traverses the sensor network 
at a constant velocity, following the schedule obtained by B&B algorithm to charge the 
sensors and gather the sensed data, the throughput of the whole network is independent of the 
moving velocity. 
Proof. Suppose there are two velocities 𝑣𝑣1 and 𝑣𝑣2, the velocity 𝑣𝑣1 is β (β is a positive number 
and 𝛽𝛽 ≠ 1) times of 𝑣𝑣2, i.e. 𝑣𝑣1 = 𝛽𝛽𝛽𝛽2. Then we have:  

𝑇𝑇2 = 𝛽𝛽𝑇𝑇1                                                         (17) 
𝜏𝜏2 = 𝛽𝛽𝜏𝜏1                                                         (18) 

where T1 and T2 are the lengths of the periods, 𝜏𝜏1 and 𝜏𝜏2 are the length of the time slots under 
the two velocity settings, respectively. Similarly, let 𝐸𝐸𝑖𝑖,𝑗𝑗

(1), 𝐸𝐸𝑖𝑖,𝑗𝑗
(2), 𝑅𝑅𝑖𝑖,𝑗𝑗

(1), 𝑅𝑅𝑖𝑖,𝑗𝑗
(2), 𝑒𝑒𝑖𝑖,𝑗𝑗

(1), 𝑒𝑒𝑖𝑖,𝑗𝑗
(2) denote 

corresponding Ei,j, Ri,j and ei,j under the two velocity settings, respectively. Let 𝑃𝑃𝑖𝑖,𝑗𝑗
(𝑟𝑟)and 𝑟𝑟𝑖𝑖,𝑗𝑗 be 

the average recharge power and the average throughput of node i in slot j, respectively. From 
theorem 1 and 2, we know that 𝑃𝑃𝑖𝑖,𝑗𝑗

(𝑟𝑟) and 𝑟𝑟𝑖𝑖,𝑗𝑗 are the same under two velocities. Then from (18), 
we have: 

𝐸𝐸𝑖𝑖,𝑗𝑗
(2) = 𝑃𝑃𝑖𝑖,𝑗𝑗

(𝑟𝑟)𝜏𝜏2 = 𝛽𝛽𝐸𝐸𝑖𝑖,𝑗𝑗
(1)                                               (19) 

𝑅𝑅𝑖𝑖,𝑗𝑗
(2) = 𝑟𝑟𝑖𝑖,𝑗𝑗𝜏𝜏2 = 𝛽𝛽𝑅𝑅𝑖𝑖,𝑗𝑗

(1)                                               (20) 

𝑒𝑒𝑖𝑖,𝑗𝑗
(2) = 𝑃𝑃𝑖𝑖𝜏𝜏2 = 𝛽𝛽𝑒𝑒𝑖𝑖,𝑗𝑗

(1)                                                 (21) 
From (17) and (20), it is obvious that the objective functions are equivalent under the two 
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velocity settings. Then we check the constraints. we only have to check constraint (11) since 
constraints (8) and (9) are irrelevant of the velocity. For any 𝑖𝑖 ∈ {0,1, … ,𝑛𝑛}, constraint (11) 
can be transformed into: 

�𝑥𝑥𝑖𝑖,𝑗𝑗𝑒𝑒𝑖𝑖,𝑗𝑗 − ∑ ∆𝐸𝐸𝑖𝑖,𝑘𝑘
𝑗𝑗−1
𝑘𝑘=1 ≤ 𝑒𝑒𝑖𝑖,0, 𝑗𝑗 ∈ {2,3, … ,𝑚𝑚}
𝑥𝑥𝑖𝑖,𝑗𝑗𝑒𝑒𝑖𝑖,𝑗𝑗 ≤ 𝑒𝑒𝑖𝑖,0, 𝑗𝑗 = 1

                             (22) 

where ∆𝐸𝐸𝑖𝑖,𝑘𝑘 = 𝑥𝑥0,𝑘𝑘𝐸𝐸𝑖𝑖,𝑘𝑘 − 𝑥𝑥𝑖𝑖,𝑘𝑘𝑒𝑒𝑖𝑖,𝑘𝑘 denotes the change of the energy of sensor i in slot k. Since 
𝑒𝑒𝑖𝑖,0 = 0, combining (22) with (19) and (21), it is easy to find that the constraint described by 
(22) is identical under the two velocity settings. In summary, the objective function and the 
constraints are exactly the same under the velocities v1 and v2. Therefore, the optimal solutions 
are also identical and we finally obtain equivalent throughput of the network under both 
settings. The theorem follows immediately. 

Here we further briefly discuss how the moving velocity impacts on the data gathering delay. 
If the transmission delay is dominant in the data gathering delay, the delay is also independent 
of the WMV’s moving velocity, because the transmission delay is inversely proportional to the 
throughput. But if other delays are large, like the queueing delay at the sensors and the data 
processing delay at the WMV, the data gathering delay is relevant to WMV’s moving velocity. 

5. Extension of the Problem 
In this section, we extend the moving trajectory of the WMV from a straight line to a circle. As 
shown in Fig. 2, we consider a scenario where sensor nodes are distributed in a circle area with 
the center A and the radius d. The WMV moves counterclockwise around the circle with the 
center A and the radius dh (the dotted line in Fig. 2) with a fixed angular velocity 𝜔𝜔. The WMV 
charges the sensors and gathers sensed data. Similarly, we will solve the OMCDG problem 
under this model. 

 
Fig. 2. The scenario that the WMV moves around a circle to charge the sensors and gather data 

 
We take A as the origin and fix a ray out from the origin in the direction of AB, and 

establish the polar coordinates. The intersection between AB and the trajectory of the WMV is 
C and the polar coordinates of sensor i are (𝜌𝜌𝑖𝑖,𝜃𝜃𝑖𝑖). Let T be the duration that the WMV starts 
from the point C and moves counterclockwise back to C. We study the OMCDG problem in 
the period of T. Similarly, we divide the whole period into m slots and the duration of each slot 
is τ. Let ℎ𝑖𝑖′(𝑡𝑡) and 𝑔𝑔𝑖𝑖′(𝑡𝑡) be the power gains of DL and UL, respectively, and 𝑑𝑑𝑖𝑖′(t) be the 
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distance between sensor i and the WMV at time t. Let 𝐸𝐸𝑖𝑖,𝑗𝑗′ , 𝑒𝑒𝑖𝑖,𝑗𝑗′  and 𝑅𝑅𝑖𝑖,𝑗𝑗′  be the harvested 
energy, consumed energy and throughput of sensor i in slot j, respectively. The OMCDG 
problem under the circular motion model can be formulated as: 

max
𝑋𝑋

 𝑍𝑍 = 𝑇𝑇−1��𝑥𝑥𝑖𝑖,𝑗𝑗

𝑚𝑚

𝑗𝑗=1

𝑅𝑅𝑖𝑖,𝑗𝑗′
𝑛𝑛

𝑖𝑖=1

 

s. t.  ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑛𝑛
𝑖𝑖=0 = 1, 𝑗𝑗 ∈ {1,2, . .𝑚𝑚}                                               

𝑥𝑥𝑖𝑖,𝑗𝑗𝑒𝑒𝑖𝑖,𝑗𝑗′ ≤ 𝑞𝑞𝑖𝑖,𝑗𝑗−1, 𝑖𝑖 ∈ {1,2, . .𝑛𝑛}, 𝑗𝑗 ∈ {1,2, . .𝑚𝑚}             (23) 
𝑥𝑥𝑖𝑖,𝑗𝑗 ∈ {0,1}, 𝑖𝑖 ∈ {0,1, … ,𝑛𝑛}, 𝑗𝑗 ∈ {1,2, … ,𝑚𝑚}                       

We can solve the above problem using similar algorithms described in Section 4.2. The 
difference is the calculation of the distance between sensors and the WMV due to different 
motion patterns. This will further lead to difference of the harvested energy and the throughput 
of the sensors in each slot.  

As shown in Fig. 2, in the movement of the WMV, the origin A, sensor i and the WMV can 
always form a triangle except when the three points are on the same line. Noting that the 
distance between the WMV and the origin A is a constant 𝑑𝑑ℎ and the distance between sensor 
i and A is also a constant 𝜌𝜌𝑖𝑖. Therefore, we can calculate the distance between the WMV and 
node i at time t according to the cosine theorem. We consider the following 4 cases as shown in 
Fig. 3: 

                   
(a)  case 1                                                (b) case 2 

                    
(c) case 3                                                (d) case 4 

Fig. 3. Four cases when the WMV moves around a circle 
 

1) Case 1: When |𝜃𝜃𝑖𝑖 − 𝜔𝜔𝜔𝜔| < 𝜋𝜋, as shown in Fig. 3(a), the angle between sensor i, origin A 
and the WMV is |𝜃𝜃𝑖𝑖 − 𝜔𝜔𝜔𝜔|. Then we have 𝑑𝑑𝑖𝑖′(t) = (𝜌𝜌𝑖𝑖2 + 𝑑𝑑ℎ2 − 2𝜌𝜌𝑖𝑖𝑑𝑑ℎ cos|𝜃𝜃𝑖𝑖 − 𝜔𝜔𝜔𝜔|)

1
2. 

2) Case 2: When |𝜃𝜃𝑖𝑖 − 𝜔𝜔𝜔𝜔| > 𝜋𝜋, as shown in Fig. 3(b), the angle between sensor i, origin A 
and the WMV is 2𝜋𝜋 − |𝜃𝜃𝑖𝑖 − 𝜔𝜔𝜔𝜔|. Then we have 𝑑𝑑𝑖𝑖′(t) = (𝜌𝜌𝑖𝑖2 + 𝑑𝑑ℎ2 − 2𝜌𝜌𝑖𝑖𝑑𝑑ℎ cos(2𝜋𝜋 −
|𝜃𝜃𝑖𝑖 − 𝜔𝜔𝜔𝜔|))

1
2. 
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3) Case 3: When |𝜃𝜃𝑖𝑖 − 𝜔𝜔𝜔𝜔| = 0 , as shown in Fig. 3(c), since 𝑑𝑑𝑖𝑖′(t) = |𝜌𝜌𝑖𝑖 − 𝑑𝑑ℎ|  and 
cos|𝜃𝜃𝑖𝑖 − 𝜔𝜔𝜔𝜔| = 1, we have 𝑑𝑑𝑖𝑖′(t)=(𝜌𝜌𝑖𝑖2 + 𝑑𝑑ℎ2 − 2𝜌𝜌𝑖𝑖𝑑𝑑ℎ cos|𝜃𝜃𝑖𝑖 − 𝜔𝜔𝜔𝜔|)

1
2. 

4) Case 4: When |𝜃𝜃𝑖𝑖 − 𝜔𝜔𝜔𝜔| = π, as shown in Fig. 3(d), since 𝑑𝑑𝑖𝑖′(t) = 𝜌𝜌𝑖𝑖 + 𝑑𝑑ℎ and cos|𝜃𝜃𝑖𝑖 −
𝜔𝜔𝜔𝜔| = −1, we have 𝑑𝑑𝑖𝑖′(t)=(𝜌𝜌𝑖𝑖2 + 𝑑𝑑ℎ2 − 2𝜌𝜌𝑖𝑖𝑑𝑑ℎ cos|𝜃𝜃𝑖𝑖 − 𝜔𝜔𝜔𝜔|)

1
2. 

To summarize, since cosine function is an even function, the distance between sensor i and 
the WMV at time t is: 

𝑑𝑑′𝑖𝑖(𝑡𝑡) = (𝜌𝜌𝑖𝑖2 + 𝑑𝑑�
2 − 2𝜌𝜌𝑖𝑖𝑑𝑑� 𝑐𝑐𝑐𝑐𝑐𝑐( 𝜃𝜃𝑖𝑖 − 𝜔𝜔𝜔𝜔))

1
2                          (24) 

Further, the channel power gain of DL and UL at time γ in the j-th (1 ≤ j ≤ m) slot can be 
expressed as: 

ℎ′𝑖𝑖,𝑗𝑗(𝛾𝛾) = 𝑔𝑔′𝑖𝑖,𝑗𝑗(𝛾𝛾) = 10−3𝜑𝜑𝑖𝑖2(𝜌𝜌𝑖𝑖2 + 𝑑𝑑�
2 − 2𝜌𝜌𝑖𝑖𝑑𝑑�𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖′)

−𝛼𝛼2                 (25) 

where 𝜃𝜃𝑖𝑖′ = 𝜃𝜃𝑖𝑖 − 𝜔𝜔𝜔𝜔 − (𝑗𝑗𝑗𝑗𝑗𝑗 − 𝜔𝜔𝜔𝜔). After obtaining the channel power gain, we can calculate 
the harvested energy and the throughput of sensor i following (5) and (6). Then we can obtain 
the feasible solutions by R&F algorithm and further obtain the optimal solution by B&B 
algorithm. Similarly, we have the following three theorems. Since the proof is very similar to 
that of Theorem 1, 2 and 3, we omit the details of the proof here to avoid duplication.  
Theorem 4. If the WMV moves around a circle and broadcasts power signals continuously, 
the average harvested power of the sensors is independent of the velocity of the WMV given a 
fixed moving path. 
Theorem 5. Suppose the sensor has sufficient energy and transmits data with a constant 
transmit power to the WMV moving around a circle with a constant velocity, the throughput of 
the sensor is independent of the velocity of the WMV given a fixed moving path. 
Theorem 6. If all the sensors have no initial power and the WMV moves around a circle 
crossing the sensor network at a constant angular velocity, following the schedule obtained by 
B&B algorithm to charge the sensors and gather the sensed data, the throughput of the whole 
network is independent of the moving velocity. 

6. Performance Evaluation 
In this section, we validate the proposed theorems and evaluate the performance of our 
proposed algorithm under different settings. We also implement two baseline algorithms for 
comparison. 

6.1 Simulation settings and baseline algorithms 
We assume that each sensor has the same transmit power, i.e. 𝑃𝑃1 = 𝑃𝑃2 = ⋯ = 𝑃𝑃𝑛𝑛 = 𝑃𝑃 = 
−20dBm, 𝜁𝜁1 = ⋯𝜁𝜁𝑛𝑛 = 𝜁𝜁 = 0.5 , 𝐵𝐵 = 1MHz  and α = 2 . For the scenario that the WMV 
moves along a straight line, the velocity v=1m/s, and for the circle scenario, the angular 
velocity ω=π/6. The received power spectral density of the AWGN at the WMV is set to 
−160dBm/Hz. Suppose an uncoded quadrature amplitude modulation (QAM) is employed and 
we set Γ = 9.8dB following [25]. Other parameter settings are specified in the following 
section since different simulations adopt different settings. 

For performance comparison, we adopt the following two baseline algorithms:  
Maximum energy first (MEF) algorithm: The sensor with the maximum remaining energy 
will transmit data in current slot. If no sensor has enough energy in current slot, the WMV 
charges the sensors. The time complexity of MEF algorithm is O(mlogn). 
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Fixed rotation (FR) algorithm: Each sensor takes turns to transmit data in each slot and the 
WMV charges the sensor if it does not have enough energy in its turn. The time complexity of 
FR algorithm is O(m). 
 

6.2 Simulation results 
In the first simulation, we consider the scenario where the WMV moves in a straight line. 
Suppose there are 4 sensor nodes denoted by S1, S2, S3 and S4 whose coordinates are (2, 2), (7, 
-4), (14, -18) and (19, 3) respectively. Let l=20m, m=20 and 𝑃𝑃𝐴𝐴 = 30dBm. First, we try to 
validate Theorem 3 by checking the impact of the WMV’s velocity on the network throughput 
using our proposed B&B algorithm, supposing that all sensors have no initial energy. As 
shown in Fig. 4, the network throughput remains unchanged with the increase in the WMV’s 
velocity, which validate the correctness of Theorem 3. Then, we try to validate Theorem 2 by 
checking the impact of the WMV’s velocity on the throughput of each sensor, supposing that 
each sensor has enough energy and transmits sensed data continuously when the WMV moves 
from A to B. The simulation results are shown in Fig. 4. We can observe that the throughput of 
each sensor also remains unchanged although the velocity of the WMV is increasing. This 
result has validated the correctness of Theorem 2. 
 

 
Fig. 4. The throughput vs. the velocity of the WMV when it moves along a straight line 

 
 

In the second simulation, we consider the scenario where the WMV moves around a circle. 
Suppose there are 4 sensor nodes denoted by S1, S2, S3 and S4 whose polar coordinates are 
(2,π 6⁄ ), (12,π), (7,3π/2)  and (15,7π/4)  respectively. Let 𝑑𝑑ℎ = 8 m, m=20 and 𝑃𝑃𝐴𝐴 =
30dBm. Similarly, we try to validate Theorem 5 and Theorem 6 by checking the impact of the 
WMV’s angular velocity on the network throughput and the throughput of each sensor under 
different conditions. The simulation results are shown in Fig. 5 and we can observe that the 
network throughput and the throughput of each sensor is independent of the angular velocity, 
which have validated the correctness of the two theorems. 
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Fig. 5. The throughput vs. the angular velocity of the WMV when it moves around a circle 

 
 

In the following simulations, we compare the average network throughput performances 
obtained by our proposed B&B algorithm and the baseline algorithms under two scenarios 
where the WMV moves in a straight line and around a circle.  In the scenario where the WMV 
moves in a straight line, sensors are randomly distributed in a square region with the 
coordinates satisfy x𝑖𝑖 ∈ [0, 20], y𝑖𝑖 ∈ [−10, 10], while in the scenario where the WMV moves 
around a circle, sensors are randomly distributed in a circular region with the polar coordinates 
satisfying 𝜌𝜌𝑖𝑖 ∈ [0, 16], 𝜃𝜃𝑖𝑖 ∈ [0, 2𝜋𝜋]. Each result in the following simulation diagrams stands 
for the average value of 100 instances with different random sensor locations. 

Firstly, we study the impact of the transmit power of the WMV on the network throughput. 
The simulation results under two different moving scenarios are shown in Fig. 6 and Fig. 7 
respectively. The curves in both figures present similar tendency. As observed, the network 
throughput obtained by all the three algorithms increases with the increase in the WMV’s 
transmit power. However, the improvement is decreasing and the throughput finally converges 
to a fixed value. This is because when the transmit power of the WMV is small, sensors take 
more time to get charged before transmission. As the transmit power of the WMV increases, 
sensors take less time to get charged and more time for transmission. But when all sensors 
have enough energy for transmission, the throughput cannot be further improved since the 
transmit power of each sensor is fixed.  In general, our proposed B&B algorithm outperforms 
the baseline algorithms FR and MEF. Specifically, in Fig. 6, the performance gain of B&B 
algorithm over MEF algorithm is 214.67% at most and 85.39% on average, while its 
performance gain over FR algorithm is 29.07% at most and 21.00% on average. In Fig. 7, The 
performance gain of B&B over MEF is 127.77% at most and 80.51% on average, while its 
performance gain over FR is 13.14% at most and 9.83% on average. 

/18 2 /18 3 /18 4 /18 5 /18

The angular velocity of the WMV (rad/s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Th
ro

ug
hp

ut
 (M

bp
s)

network throughput

throughput of S 1

throughput of S 2

throughput of S 3

throughput of S 4



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019                                      3427 

 
Fig. 6. The network throughput obtained by three algorithms vs. the transmit power of the WMV when 

it moves along a straight line, m=20, n=4 

 
Fig. 7. The network throughput obtained by three algorithms vs. the transmit power of the WMV when 

it moves around a circle, m=24, n=4 
 

Secondly, we study the impact of the number of slots on the network throughput. The 
simulation results under two different moving scenarios are shown in Fig. 8 and Fig. 9 
respectively. The curves in both figures present similar tendency. As we can see, the 
throughput obtained by all the three algorithms does not consistently increase with the 
increases in the number of time slots. Suppose the number of slots is x, we can only ensure that 
the throughput with the slot number setting to kx (k>1, k Z∈ ) is larger than that with the slot 
number setting to x. As the number of slots is large enough, the three algorithms have little 
change in the throughput. This is because as the number of slots is getting larger, the slot 
duration is getting smaller, which approximates the situation under continuous time. In general, 
our proposed B&B algorithm outperforms the baseline algorithms FR and MEF. Specifically, 
in Fig. 8, the performance gain of B&B algorithm over MEF algorithm is 77.04% at most and 
66.64% on average, while its performance gain over FR algorithm is 32.63% at most and 
28.85% on average. In Fig. 9, The performance gain of B&B over MEF is 68.80% at most and 
64.80% on average, while its performance gain over FR is 31.76% at most and 27.23% on 
average. 
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Fig. 8. The network throughput obtained by three algorithms vs. the number of slots when the WMV 

moves along a straight line, PA=30dBm, n=4 
 

 
Fig. 9. The network throughput obtained by three algorithms vs. the number of slots when the WMV 

moves around a circle, PA=30dBm, n=4 
 
 

Finally, we study the impact of the number of sensors on the network throughput. The 
simulation results under two different moving scenarios are shown in Fig. 10 and Fig. 11 
respectively. The curves in both figures present similar tendency. As we can observe, when the 
number of sensors increases, the network throughput obtained by all the three algorithms 
almost increases linearly. This is because the WMV can charge multiple sensors 
simultaneously. So, when the number of sensors increases, more sensors can contribute to the 
network throughput. As expected, our proposed B&B algorithm outperforms the baseline 
algorithms FR and MEF. Specifically, in Fig. 10, the performance gain of B&B algorithm over 
MEF algorithm is 48.06% at most and 43.39% on average, while its performance gain over FR 
algorithm is 25.59% at most and 18.93% on average. In Fig. 11, The performance gain of 
B&B over MEF is 72.55% at most and 58.43% on average, while its performance gain over 
FR is 30.82% at most and 22.58% on average. 
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Fig. 10. The network throughput obtained by three algorithms vs. the number of sensors when the 

WMV moves along a straight line, PA=30dBm, m=20 

 
Fig. 11. The network throughput obtained by three algorithms vs. the number of slots when the WMV 

moves around a circle, PA=30dBm, m=24  

7. Conclusion 
In this paper, we study the joint optimization of mobile charging and data gathering in sensor 
networks, with the objective of maximizing the uplink throughput by optimally allocating the 
time for the downlink wireless energy transfer by the WMV and the uplink transmissions of 
different sensors. We consider two scenarios where the WMV moves in a straight line and 
around a circle to charge sensors and gather data. By time discretization, the optimization 
problem is formulated as a 0-1 programming problem. We obtain the upper and lower bounds 
of the problem by converting the original 0-1 programming problem into a linear 
programming problem and then obtain the optimal solution by using branch and bound 
algorithm. We further prove that the network throughput is independent of the WMV’s 
velocity under certain conditions. Performance of our proposed algorithm is evaluated through 
extensive simulations. The results validate the correctness of our proposed theorems and 
demonstrate that our algorithm outperforms two baseline algorithms in achieved throughput 
under different settings. 
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