• Title/Summary/Keyword: timber frame

Search Result 48, Processing Time 0.023 seconds

Experimental characterization of timber framed masonry walls cyclic behaviour

  • Goncalves, Ana Maria;Ferreira, Joao Gomes;Guerreiro, Luis;Branco, Fernando
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.189-204
    • /
    • 2015
  • After the large destruction of Lisbon due to the 1755 earthquake, the city had to be almost completely rebuilt. In this context, an innovative structural solution was implemented in new buildings, comprising internal timber framed walls which, together with the floors timber elements, constituted a 3-D framing system, known as "cage", providing resistance and deformation capacity for seismic loading. The internal timber framed masonry walls, in elevated floors, are constituted by a timber frame with vertical and horizontal elements, braced with diagonal elements, known as Saint Andrew's crosses, with masonry infill. This paper describes an experimental campaign to assess the in-plane cyclic behaviour of those so called "frontal" walls. A total series of 4 tests were conducted in 4 real size walls. Two models consist of the simple timber frames without masonry infill, and the other two specimens have identical timber frames but present masonry infill. Experimental characterization of the in-plane behaviour was carried out by static cyclic shear testing with controlled displacements. The loading protocol used was the CUREE for ordinary ground motions. The hysteretic behaviour main parameters of such walls subjected to cyclic loading were computed namely the initial stiffness, ductility and energy dissipation capacity.

Thermal Resistance and Condensation in the Light-frame Timber Wall Structures with Various Composition of Insulation Layers

  • Jang, Sang Sik;Lee, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.533-542
    • /
    • 2019
  • As energy costs increase, more people has become interested on energy efficiency and savings in residential buildings. The two main subjects related to energy in residential buildings are insulation and condensation. There are two approaches to prevent condensation; increasing air tightness and maintaining the temperature inside of the wall structure over the dew point, which is in turn related to insulation. Even though the Korean government has highlighted the importance of energy efficiency for residential housings, and in spite of the customers' demands, the timber construction industry is still using conventional light-frame construction without even trying to improve energy efficiency. In this study, various types and combinations of wall structures were tested under cold outdoor and warm indoor temperatures to analyse the temperature gradients and to determine the possible sites of condensation in the wall structures. In addition to the experimental tests, three theoretical models were developed and their estimations of temperature change through the wall structure were compared with the actual measurements to evaluate accuracy of the models. The results of the three models agree relatively well with the experimental values, indicating that they can be used to estimate temperature changes in wall structures. The theoretical analysis of different insulation layers' combinations show that condensation may occur within the mid-layer in the conventional light-frame wall structures for any combination of inner-, mid-, and outer-layers of insulation. Therefore, it can be concluded that the addition of an inner and outer insulation layer or increasing the thickness of insulation may not be adequate to prevent condensation in the wall structure without preventing penetration of warm moist air into the wall structure.

Seismic reliability evaluation of steel-timber hybrid shear wall systems

  • Li, Zheng;He, Minjuan;Lam, Frank;Zhou, Ruirui;Li, Minghao
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.289-297
    • /
    • 2017
  • This paper presents seismic performance and reliability evaluation on steel-timber hybrid shear wall systems composed of steel moment resisting frames and infill light frame wood shear walls. Based on experimental observations, damage assessment was conducted to determine the appropriate damage-related performance objectives for the hybrid shear wall systems. Incremental time-history dynamic analyses were conducted to establish a database of seismic responses for the hybrid systems with various structural configurations. The associated reliability indices and failure probabilities were calculated by two reliability methods (i.e., fragility analysis and response surface method). Both methods yielded similar estimations of failure probabilities. This study indicated the greatly improved seismic performance of the steel-timber hybrid shear wall systems with stronger infill wood shear walls. From a probabilistic perspective, the presented results give some insights on quantifying the seismic performance of the hybrid system under different seismic hazard levels. The reliability-based approaches also serve as efficient tools to assess the performance-based seismic design methodology and calibration of relative code provisions for the proposed steel-timber hybrid shear wall systems.

Experimental study on Chinese ancient timber-frame building by shaking table test

  • Zhang, Xi-Cheng;Xue, Jian-Yang;Zhao, Hong-Tie;Sui, Yan
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.453-469
    • /
    • 2011
  • A one-story, wooden-frame, intermediate-bay model with Dou-Gon designed according to the Building Standards of the Song Dynasty (A.D.960-1279), was tested on a unidirectional shaking table. The main objectives of this experimental study were to investigate the seismic performance of Chinese historic wooden structure under various base input intensities. El Centro wave (N-S), Taft wave and Lanzhou wave were selected as input excitations. 27 seismic geophones were instrumented to measure the real-time displacement, velocity and acceleration respectively. Dynamic characteristics, failure mode and hysteretic energy dissipation performance of the model are analyzed. Test results indicate that the nature period and damping ratio of the model increase with the increasing magnitude of earthquake excitation. The nature period of the model is within 0.5~0.6 s, the damping ratio is 3~4%. The maximum acceleration dynamic magnification factor is less than 1 and decreases as the input seismic power increases. The frictional slippage of Dou-Gon layers (corbel brackets) between beams and plates dissipates a certain amount of seismic energy, and so does the slippage between posts and plinths. The mortise-tenon joint of the timber frame dissipates most of the seismic energy. Therefore, it plays a significant part in shock absorption and isolation.

Characterization of Radial Stress in Curved Beams

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.128-136
    • /
    • 2009
  • Curved glued laminated timber (glulam) is rapidly coming into the domestic modern timber frame buildings and predominant in building construction. The radial stress is frequently occurred in curved beams and is a critical design parameter in curved glulam. Three models, Wilson equation, Exact solution and Approximation equation were introduced to determine the radial stress of curved glulam under pure bending condition. It is obvious that radial stress distribution between small radius and large radius was different due to slight change of neutral plane location to center line. If the beam design with extremely small radius, it should be considered to determine the exact location of maximum radial stress. The current standard KSF 3021 was reviewed and would be considered some adjustment determining the optimum radius in curved glulam. Current design principle is that the stress factor is given by the curvature term only in constant depth of the beam, but like tapered or small radius of beams, the stress factor by Wilson equation was underestimated. So current design formula should be considered to improvement for characterizing the radial stress factor under pure bending condition.

A Study on the Formation of Presbyterian Missionary Architecture in Andong Area (미국(美國) 북장로회(北長老會) 안동선교부(安東宣敎部) 건축형성과정(建築形成過程)에 대한 연구(硏究))

  • Dho, Sunboong;Han, Kyuyoung
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.2 no.2
    • /
    • pp.47-62
    • /
    • 2000
  • The purpose of this study is to analyze and explain the formation and character of presbyterian missionary architecture in Andong area from 1900 to 1945, which we may call "the modem architecture of Korea". I have surveyed and analyzed the 26 buildings. and so, the major findings of this study are as follows. Firstly, the phase of building is 1) buy the existing Korean traditional building and lot-a thatch roofed house. 2) modify the existing Korean traditional building-a thatch and tile roofed hose. 3) build the Korean style building-a thatch and tile roofed building. 4) build the Western style Building-a timber structured and zinc roofed building. 5) build the Western style Building- a masonry structured and zinc(or tile)roofed building. Secondly, the character of building is 1) In the Korean traditional building, the missionaries change the function for their purpose-office, church, school, hospital. they modify the existing Korean timber frame construction by introducing the material-brick, plaster, glass, Japanese style timber etc .. they live in the Korean existing residential area. 2) In the Western style building, the missionaries build the house according to their life style. they build the timber structured building-church, and the masonry (brick or stone)structured building such as a house, church, school and dormitory, and hospital. their building located on the hill depart from the existing Korean residential area.

  • PDF

Numerical study on Floor Response Spectrum of a Novel High-rise Timber-concrete Structure

  • Xiong, Haibei;Zheng, Yingda;Chen, Jiawei
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.273-282
    • /
    • 2020
  • An innovative high-rise timber-concrete hybrid structure was proposed in previous research, which is composed of the concrete frame-tube structure and the prefabricated timber modules as main structure and substructures, respectively. Considering that the timber substructures are built on the concrete floors at a different height, the floor response spectrum is more effective in estimating the seismic response of substructures. In this paper, the floor response spectra of the hybrid structure with different structural parameters were calculated using dynamic time-history analysis. Firstly, one simplified model that can well predict the seismic response of the hybrid structure was proposed and validated. Then the construction site, the mass ratio and the frequency ratio of the main-sub structure, and the damping ratio of the substructures were discussed. The results demonstrate that the peaks of the floor response spectra usually occur near the vibration periods of the whole structure, among which the first two peaks stand out; In most cases, the acceleration amplification effect on substructures tends to be more evident when the construction site is farther from the fault rupture; On the other hand, the acceleration response of substructures can be effectively reduced with an appropriate increase in the mass ratio of the main-sub structure and the damping ratio of the substructures; However, the frequency ratio of the main-sub structure has no discernible effect on the floor response spectra. This study investigates the characteristics of the floor response spectrum of the novel timber-concrete structure, which supports the future applications of such hybrid structure in high-rise buildings.

Structures and Competitiveness of Softwood Products in Korean Import Market (우리나라 수입(輸入) 침엽수재(針葉樹材) 시장구조(市場構造) 및 수종별(樹種別) 경쟁력(競爭力))

  • Kim, Wae-Jung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.34-42
    • /
    • 1991
  • Protection of tropical forest affects on significant reduce of tropical hardwood supply, and softwood resources will be increasingly important for the timber security in Korea. U.S. softwood log was most favorite species for Korean softwood log importers in overall import conditions except price stablization and consistency of export policy. Reduced export volume from Pacific Northwest to Korean market has been immediately replenished by rediata pine from New Zealand and Chilean plantation. Siberian timber will hardly play major roles in Korean timber market unless budding structure. softwood plywood and softwood furniture uses are enhanced. Recent rapid rise of labor cost and reducing tariff rrate in Korea provided better opportunities for import lumber in building materials market. Dry dimension lumber was relatively profitable when processed from import U.S. soft-wood log while green lumber was favorable products processed from radiata pine log in Korean lumber market. This means U.S. softwood lumber would have better opportunity to market for '2${\times}$'4 studs when wood frame housing is introduced. On the other hand while radiata pine is competitive on temporary construction lumber such as supporter and concrete forming frame in Korea. Shortage of raw material for the new capacity of board plants in Korea will be it bottle neck. Major log export countries to Korea as U.S. New Zealand and Chile showed high trade intensity indices of composite hoard produces for Korean market. As Korea efforts to diversify import sources, and tariffs are reduced to 8% as scheduled by 1994. countries of scoring higher comparative advantages as Portugal. Brazil, Austria as well as New Zealand will have better opportunity to penetrate into promised Korean composites hoard market.

  • PDF

Elasto-plastic behaviour of structural laminated timber joint by flange thickness of H beam (H형강 플랜지 두께변화에 따른 구조용집성재 접합부의 탄소성거동)

  • Kim, Soon Chul;Yang, Il Seung
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.385-393
    • /
    • 2006
  • In Korea, the effective utilization of wod structure is encour aged to preserve natural resources and the global environment.ote demand for wod. The efective combination of structural la minated timber and other materials is expected to extend the potential of building structures. This research examines the moment resis tance-type jointing method using structural laminated timber and H-section stel aiming at development of the two-direction frame for lar ge 9 mm and 12 mm) of the H section. Therefore, we conducted the experiment with bending test of the joints to investigate the s tifnes, strength, strain distributions of laminated timber an d of the flange of the H section, and failure paterns. As shown in the results, t he joints with a flange thicknes of 9 mm and 12 m have superi or strength with a flange thicknes of 9 mm and 12 mm were very large, whic h confirmed the high level of energy absorption of such structure s.

Sensitivity analysis of probabilistic seismic behaviour of wood frame buildings

  • Gu, Jianzhong
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.109-127
    • /
    • 2016
  • This paper examines the contribution of three sources of uncertainties to probabilistic seismic behaviour of wood frame buildings, including ground motions, intensity and seismic mass. This sensitivity analysis is performed using three methods, including the traditional method based on the conditional distributions of ground motions at given intensity measures, a method using the summation of conditional distributions at given ground motion records, and the Monte Carlo simulation. FEMA P-695 ground motions and its scaling methods are used in the analysis. Two archetype buildings are used in the sensitivity analysis, including a two-storey building and a four-storey building. The results of these analyses indicate that using data-fitting techniques to obtain probability distributions may cause some errors. Linear interpolation combined with data-fitting technique may be employed to improve the accuracy of the calculated exceeding probability. The procedures can be used to quantify the risk of wood frame buildings in seismic events and to calibrate seismic design provisions towards design code improvement.