Browse > Article
http://dx.doi.org/10.12989/eas.2017.13.3.289

Seismic reliability evaluation of steel-timber hybrid shear wall systems  

Li, Zheng (Department of Structural Engineering, Tongji University)
He, Minjuan (Department of Structural Engineering, Tongji University)
Lam, Frank (Department of Wood Science, University of British Columbia)
Zhou, Ruirui (Department of Structural Engineering, Tongji University)
Li, Minghao (Department of Civil & Natural Resources Engineering, University of Canterbury)
Publication Information
Earthquakes and Structures / v.13, no.3, 2017 , pp. 289-297 More about this Journal
Abstract
This paper presents seismic performance and reliability evaluation on steel-timber hybrid shear wall systems composed of steel moment resisting frames and infill light frame wood shear walls. Based on experimental observations, damage assessment was conducted to determine the appropriate damage-related performance objectives for the hybrid shear wall systems. Incremental time-history dynamic analyses were conducted to establish a database of seismic responses for the hybrid systems with various structural configurations. The associated reliability indices and failure probabilities were calculated by two reliability methods (i.e., fragility analysis and response surface method). Both methods yielded similar estimations of failure probabilities. This study indicated the greatly improved seismic performance of the steel-timber hybrid shear wall systems with stronger infill wood shear walls. From a probabilistic perspective, the presented results give some insights on quantifying the seismic performance of the hybrid system under different seismic hazard levels. The reliability-based approaches also serve as efficient tools to assess the performance-based seismic design methodology and calibration of relative code provisions for the proposed steel-timber hybrid shear wall systems.
Keywords
steel-timber hybrid structures; seismic reliability; shear walls; fragility analysis; response surface method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 ASCE/SEI-41. (2013), "Seismic evaluation and retrofit of existing buildings", American Society of Civil Engineers, Reston, VA.
2 Buchanan, A.H., Deam, B., Fragiacomo, M., Pampanin, S. and Palermo, A. (2008), "Multi-storey prestressed timber buildings in New Zealand", Struct. Eng. Int., 18(2), 166-173.   DOI
3 Chinese Standard GB 50017. (2003), Code for Design of Steel Structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Beijing, China (in Chinese).
4 Chinese Standard GB 50011. (2010), Chinese Code for Seismic Design of Buildings, National Standard of the People's Republic of China (NSPRC), Beijing, China (in Chinese).
5 Cornell, C.A., Jalayer, F., Hamburger, R.O. and Foutch, D.A. (2002), "Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines", J. Struct. Eng., 128(4), 526-533.   DOI
6 Dickof, C., Stiemer, S.F., Bezabeh, M.A. and Tesfamariam, S. (2014), "CLT-steel hybrid system: ductility and overstrength values based on static pushover analysis", J. Perform. Constr. Fac., 28(6), A4014012.   DOI
7 Filiatrault, A. and Folz, B. (2002), "Performance-based seismic design of wood framed buildings", J. Struct. Eng., 128(1), 39-47.   DOI
8 Foliente, G.C. (2000), "Reliability assessment of timber shear walls under earthquake loads", Proceedings of the 12th World Conference on Earthquake Engineering, Paper No. 612.
9 Sakamoto, I., Kawai, N., Okada, H., Yamaguchi, N., Isoda, H. and Yusa, S. (2004), "Final report of a research and development project on timber based hybrid building structures", Proceedings of the 8th World Conference on Timber Engineering, Finnish Association of Civil Engineers, Helsinki, Finland.
10 Smith, T., Fragiacomo, M., Pampanin, S. and Buchanan, A. (2009), "Construction time and cost estimates for post-tensioned multi-storey timber buildings", Proc. Inst. Civil Eng. - Construction Materials, 162(4), 141-149.   DOI
11 Tesfamariam, S., Stiemer, S.F., Dickof, C. and Bezabeh, M.A. (2014), "Seismic vulnerability assessment of hybrid steel-timber structure steel frame with CLT infill", J. Earthq. Eng., 18(6): 929-944.   DOI
12 Van de Lindt, J.W., Pryor, S.E. and Pei, S. (2011), "Shake table testing of a full-scale seven-story steel-wood apartment building", Eng. Struct., 33(3), 757-766.   DOI
13 Wang, C. and Foliente, G.C. (2006), "Seismic reliability of low-rise nonsymmetric woodframe buildings", J. Struct. Eng., 132(5), 733-744.   DOI
14 Li, Z., He, M.,Wang, X. and Li, M. (2017b), "Seismic performance assessment of steel frame infilled with prefabricated wood shear walls", J. Constr. Steel. Res., DOI: 10.1016/j.jcsr.2017.10.012.   DOI
15 Kazantzi, A.K., Righiniotis, T.D. and Chryssanthopoulos, M.K. (2008), "Fragility and hazard analysis of a welded steel moment resisting frame", J. Earthq. Eng., 12(4), 596-615.   DOI
16 Foschi, R.O., Li, H., Folz, B., Yao, F. and Zhang, J. (2007), "RELAN - Reliability analysis software, V8.0", Univ. of British Columbia, Vancouver, Canada.
17 Gu, J. and Lam, F. (2004), "Simplified mechanics-based wood frame shear wall model", Proceedings of the 13th World Conf. on Earthquake Engineering, Paper No. 3109. Vancouver, Canada.
18 Yamaguchi, M., Kawai, N., Murakami, T., Shibata, N. and Namiki, Y. (2004), "Constructions and researches after the project of developing hybrid timber buildings", Proceedings of the 8th World Conference on Timber Engineering, Finnish Association of Civil Engineers, Helsinki, Finland.
19 Zhang, X., Fairhurst, M. and Tannert, T. (2016), "Ductility estimation for a novel timber-steel hybrid system", J. Struct. Eng., 142(4), E4015001-1-11.   DOI
20 He, M., Li, Z., Lam, F., Ma, R. and Ma, Z. (2014), "Experimental investigation on lateral performance of steel-timber hybrid shear wall systems", J. Struct. Eng., 140(4), 04014029.   DOI
21 Kazantzi, A.K., Righiniotis, T.D. and Chryssanthopoulos, M.K. (2011), "A simplified fragility methodology for regular steel MRFs", J. Earthq. Eng., 15(3), 390-403.   DOI
22 Li, M. and Lam, F. (2009), "Lateral performance of nonsymmetric diagonal-braced wood shear walls", J. Struct. Eng., 135(2), 178-186.   DOI
23 Li, M., Lam, F. and Foschi, R.O. (2009), "Seismic reliability analysis of diagonal-braced and structural-panel-sheathed wood shear walls", J. Struct. Eng., 135(5), 587-596.   DOI
24 Li, Z., Dong, H., Wang, X. and He, M. (2017a), "Experimental and numerical investigations into seismic performance of timber-steel hybrid structure with supplemental dampers", Eng. Struct., 151, 33-43.   DOI
25 Li, Z., He, M., Lam, F., Li, M., Ma, R. and Ma, Z. (2014a), "Finite element modelling and parametric analysis of steel-timber hybrid structures", Struct. Des. Tall. Spec., 23(14), 1045-1063.   DOI
26 Li, Z., He, M., Li, M. and Lam, F. (2014b), "Damage assessment and performance-based seismic design of steel-timber hybrid shear wall systems", Earthq. Struct., 7(1), 101-117.   DOI
27 Li, Z., He, M., Ma, Z., Wang, K. and Ma, R. (2016), "In-plane behavior of steel-timber hybrid floor diaphragms: experimental testing and numerical simulation", J. Struct. Eng., 142(12), 04016119.   DOI
28 Roeder, C., Lumpkin, E., and Lehman, D. (2012), "Seismic Performance Assessment of Concentrically Braced Steel Frames", Earthq. Spectra, 28(2), 709-727.   DOI
29 Noh, H.Y., Lignos, D.G., Nair, K.K. and Kiremidjian, A.S. (2012), "Development of fragility functions as a damage classification/prediction method for steel moment-resisting frames using a wavelet-based damage sensitive feature", Earthq. Eng. Struct. Dyn., 41(4), 681-696.   DOI
30 Pozza, L. and Trutalli, D. (2017), "An analytical formulation of qfactor for mid-rise CLT buildings based on parametric numerical analyses", Bull. Earthq. Eng., 15(5), 2015-2033.   DOI