Browse > Article
http://dx.doi.org/10.12989/eas.2016.11.1.109

Sensitivity analysis of probabilistic seismic behaviour of wood frame buildings  

Gu, Jianzhong (Architectural and Engineering Technology, Thompson Rivers University)
Publication Information
Earthquakes and Structures / v.11, no.1, 2016 , pp. 109-127 More about this Journal
Abstract
This paper examines the contribution of three sources of uncertainties to probabilistic seismic behaviour of wood frame buildings, including ground motions, intensity and seismic mass. This sensitivity analysis is performed using three methods, including the traditional method based on the conditional distributions of ground motions at given intensity measures, a method using the summation of conditional distributions at given ground motion records, and the Monte Carlo simulation. FEMA P-695 ground motions and its scaling methods are used in the analysis. Two archetype buildings are used in the sensitivity analysis, including a two-storey building and a four-storey building. The results of these analyses indicate that using data-fitting techniques to obtain probability distributions may cause some errors. Linear interpolation combined with data-fitting technique may be employed to improve the accuracy of the calculated exceeding probability. The procedures can be used to quantify the risk of wood frame buildings in seismic events and to calibrate seismic design provisions towards design code improvement.
Keywords
earthquake engineering; probability; reliability; wood frame structures; timber; seismic effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Applied Technology Council (ATC) (2009), "Quantification of building seismic performance factors", FEMA P-695 report, Federal Emergency Management Agency (FEMA), U.S. Department of Homeland Security, Washington, DC.
2 Ceccotti, A. and Foschi, R.O. (1999), "Reliability assessment of wood shear walls under earthquake excitation", Proceedings of the 3rd International Conference on Computational Stochastic Mechanics, Balkema, Brookfield, Vermont.
3 Cornell, C.A., Jalayer, F., Hamburger, R.O. and Foutch, D.A. (2002), "Probabilistic basis for 2000 SAC Federal Emergency Management Agency steel moment frame guidelines", J. Struct. Eng., 128(4), 526-533.   DOI
4 Ellingwood, B., Rosowsky, D., Li, Y. and Kim, J. (2004), "Fragility assessment of light-frame wood construction subjected to wind and earthquake hazards", J. Struct. Eng., 130(12), 1921-1930.   DOI
5 Filiatrault, A., Christovasilis, I., Wanitkorkul, A. and van de Lindt, J. (2010), "Experimental seismic response of a full-scale light-frame wood building", J. Struct. Eng., 136(3), 246-254.   DOI
6 Filiatrault, A. and Folz, B. (2002), "Performance-based seismic design of wood framed buildings", J. Struct. Eng., 128(1), 39-47.   DOI
7 Fischer, D., Filiatrault, A., Folz, B., Uang, C.M. and Seible, F. (2001), "Shake table tests of a two-story woodframe house", CUREE Rep. No. W-06, Task 1.1.1, Consortium of Universities for Research in Earthquake Engineering, Richmond, California.
8 Folz, B. and Filiatrault, A. (2001), "Cyclic analysis of wood shear walls", J. Struct. Eng., 127(4), 433-441.   DOI
9 Folz, B. and Filiatrault, A. (2004), "Seismic analysis of woodframe structures II: model implementation and verification", J. Struct. Eng., 130(9), 1361-1370.   DOI
10 Li, Y., Yin, Y., Ellingwood, B.R. and Bulleit, W.M. (2010), "Uniform hazard versus uniform risk bases for performance-based earthquake engineering of light-frame wood construction", Earthq. Eng. Struct. Dyn., 39(11), 1199-1217.   DOI
11 Pang, W., Rosowsky, D.V., Ellingwood, B.R. and Wang Y. (2009), "Seismic fragility analysis and retrofit of conventional residential wood-frame structures in the Central United States", J. Struct. Eng., 135(3), 262-271.   DOI
12 Pei, S., van de Lindt, J. and Popovski, M. (2012), "Approximate R-factor for cross laminated timber walls in multi-story buildings", J. Archit. Eng., 19(4), 245-255.   DOI
13 Rosowsky, D.V. (2002), "Reliability-based seismic design of wood shear wall", J. Struct. Eng., 128(11), 1439-1453.   DOI
14 Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514.   DOI
15 van de Lindt, J., Pei, S., Pryor, S.E., Shimizu, H. and Isoda, H. (2010), "Experimental seismic response of a full-scale six-story light-frame wood building", J. Struct. Eng., 136(10), 1262-1272.   DOI
16 van de Lindt, J., Rosowsky, D., Pang, W. and Pei, S. (2013), "Performance-based seismic design of midrise woodframe buildings", J. Struct. Eng., 139(8), 1294-1302.   DOI
17 Wang, C.H. and Foliente, G.C. (2006), "Seismic reliability of low-rise nonsymmetric woodframe buildings", J. Struct. Eng., 132(5), 733-744.   DOI
18 Zhang, J. and Foschi, R.O. (2004), "Performance-based design and seismic reliability analysis using designed experiments and neural networks", Prob. Eng. Mech., 19(3), 259-267.   DOI