• Title/Summary/Keyword: three-phase PWM inverter

Search Result 238, Processing Time 0.033 seconds

Average Current Mode Control Technique Having Fast Response (빠른 응답 특성을 가지는 Average Current Mode Control 설계 기법 연구)

  • Park, Hae-Chan;Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.231-239
    • /
    • 2017
  • A novel current control technique with fast response and application in an unbalanced system is proposed in this paper. Contrary to the conventional PI and dead-beat current control techniques, the proposed method is adopted to the valley current mode control (VCMC) and average current mode control (ACMC) methods to overcome the phase delay caused by conventional methods. The advantages of the proposed system are simplicity of structure and ease of implementation. The VCMC and ACMC methods are established and applied to the buck converter, boost converter, three-phase PWM converter, and three-phase inverter. The control performances of the proposed systems are shown by computer simulations and verified by experimental results.

An Algorithm for Even Distribution of Loss, Switching Frequency, Power of Model Predictive Control Based Cascaded H-bridge Multilevel Converter (모델 예측 제어 기반 Cascaded H-bridge 컨버터의 균일한 손실, 스위칭 주파수, 전력 분배를 위한 알고리즘)

  • Kim, I-Gim;Kwak, Sang-Shin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.448-455
    • /
    • 2015
  • A model predictive control (MPC) method without individual PWM has been recently researched to simplify and improve the control flexibility of a multilevel inverter. However, the input power of each H-bridge cell and the switching frequency of switching devices are unbalanced because of the use of a restricted switching state in the MPC method. This paper proposes a control method for balancing the switching patterns and cell power supplied from each isolated dc source of a cascaded H-bridge inverter. The supplied dc power from isolated dc sources of each H-bridge cells is balanced with the proposed cell balancing method. In addition, the switching frequency of each switching device of the CHB inverter becomes equal. A simulation and experimental results are presented with nine-level and five-level three-phase CHB inverter to validate the proposed balancing method.

Optimized Low-Switching-Loss PWM and Neutral-Point Balance Control Strategy of Three-Level NPC Inverters

  • Xu, Shi-Zhou;Wang, Chun-Jie;Han, Tian-Cheng;Li, Xue-Ping;Zhu, Xiang-Yu
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.702-713
    • /
    • 2018
  • Power loss reduction and total harmonic distortion(THD) minimization are two important goals of improving three-level inverters. In this paper, an optimized pulse width modulation (PWM) strategy that can reduce switching losses and balance the neutral point with an optional THD of three-level neutral-point-clamped inverters is proposed. An analysis of the two-level discontinuous PWM (DPWM) strategy indicates that the optimal goal of the proposed PWM strategy is to reduce switching losses to a minimum without increasing the THD compared to that of traditional SVPWMs. Thus, the analysis of the two-level DPWM strategy is introduced. Through the rational allocation of the zero vector, only two-phase switching devices are active in each sector, and their switching losses can be reduced by one-third compared with those of traditional PWM strategies. A detailed analysis of the impact of small vectors, which correspond to different zero vectors, on the neutral-point potential is conducted, and a hysteresis control method is proposed to balance the neutral point. This method is simple, does not judge the direction of midpoint currents, and can adjust the switching times of devices and the fluctuation of the neutral-point potential by changing the hysteresis loop width. Simulation and experimental results prove the effectiveness and feasibility of the proposed strategy.

Regeneration Inverter System for DC Traction with Hormonic Reduction Capability (고조파 저감 능력을 가진 직류전철 회생인버터 시스템)

  • Won, Chung-Yuen;Jang, Su-Jin;Kim, Yong-Ki;Bang, Hyo-Jin;Song, Sang-Hun;Ahn, Kyu-Bok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.96-104
    • /
    • 2004
  • This paper proposes a dc power regenerating systems, which can generate the excessive dc power from dc bus line to ac supply in substations for traction system The proposed regeneration inverter system for dc traction can be used as both an inverter and an active power filter(APF). As an regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. From the viewpoint of both power capacity and switching losses, the system is designed on the basis of three phase PWM inverters and composed of parallel inverters, output transformers, and an LCL filter.

Driving the induction motor of indirect vector control using the 3-level inverter in the overmodulation region (3-level인버터를 이용한 과변조영역에서의 간접벡터 유도전동기 구동)

  • Lee, Jae-Moon;Jung, Hun-Sun;Nho, Se-Jin;Lee, Eun-Kyu;Yeum, Sang-Kyu;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.403-405
    • /
    • 2007
  • This paper presents the over-modulation strategy and indirect vector control drive of NPC type PWM inverter. NPC inverter has three level phase voltage output.It can perform in high voltage through assembling switching components. It has less harmonics and surge voltage stress at motor terminals than the 2 level inverter in same switching frequency through 3 level voltage. The conventional railway vehicle has used the vector control to MI=0.907 and the slip-frequency control from MI=0.907 to six-step mode. The slip-frequency control has bad motive power and slow torque control response. But vector control has good motive power and can instant torque control. In this paper, output voltage is controlled linearly from linear region to six-step mode by using over-modulation strategy. And NPC inverter is used.

  • PDF

A Stipulation Based Sources Insertion Multilevel Inverter (SBSIMLI) for Waning the Component Count and Separate DC Sources

  • Edwin, Jose S;Titus, S
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1519-1528
    • /
    • 2017
  • The paper proposes a well structured, component count waned single phase multilevel inverter (MLI) topology, which drives three different modules viz. Stipulation Based Sources Insertion (SBSI) module, Level Count Increasing (LCI) module and Inter-Linking H-Bridge (ILHB) module. The SBSI module confronts the number of basic sources needed in series/parallel to achieve required magnitude for any particular level. The LCI possesses an offsetting dc source and opuses to increase the number of levels and the ILHB module links the SBSI and LCI modules. A developed Hybrid Pulse Width Modulation (HPWM) strategy has PWM pulses for the switches of LCI module while the switches of the remaining two modules function at fundamental switching frequency. A fifteen level version of the proposed stipulation based sources insertion MLI (SBSIMLI) topology is simulated in MATLAB R2010a and a prototype of the similar specifications is constructed to validate the performance by experimental results. The comparison between the developed SBSIMLI topology and the competent topologies shows many interesting facts.

Design of the Robust Active Power Filter under the Unbalanced and Distorted Source Voltages in Three-phase Four-wire Systems (전원전압의 불평형 및 왜곡에 강인한 3상 4선식 전력용 능동 필터의 설계)

  • Min Joon-Ki;Kim HyoSung;Choi Jaeho;Kim Kyung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.420-429
    • /
    • 2004
  • This paper proposes a novel current control strategy on active power filters using PQR instantaneous power theory which can compensate the line current harmonics and the neutral line current under the unbalanced and/or distorted source conditions in three-phase four-wire systems. The characteristics of the inverter ac filters are analyzed and a novel digital controller are proposed to overcome the inherent time delay problem in digital controllers with designed control gain in this paper. The proposed current control method is based on a sinusoidal PWM for fully-digital implementation compared with a conventional hysteresis PWM. PSiM simulation results verify the good performance of the proposed current control strategy on shunt type APFs.

Performance Analysis of a Three-Phase Parallel Active Power Filter which Compensates PCC Voltage and the Unbalanced Loads

  • Lee, Woo-Cheol;Lee, Taeck-Kie;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.9-18
    • /
    • 2001
  • The performance analysis of a three-phase parallel active power filter that compensates PCC voltage and the unbalanced loads is presented in this paper. The proposed scheme in this paper employs a PWM voltage-source inverter and has two operation modes. Firstly, it operates as a conventional active filter with reactive power compensation when PCC voltage is within the 15% voltage drop range. Secondly, it operates as a voltage compensator when PCC voltage is not within the 15% voltage drop range. And both APF and voltage compensator compensate asymmetries caused by nonlinear loads. Finally, two methods of detecting the negative sequence are reviewed, and the validity of this scheme is investigated through analysis of simulation and experimental results for a prototype active power filter system rate at 10KVA.

  • PDF

New RPWM techniques for three-phase induction motor drive using four-switch three-phase inverter (4-SWITCH 3상인버터를 이용한 3상 유도전동기 구동을 위한 새로운 RPWM 기법)

  • Lee Hyo-Sang;Kwon Soo-Bum;Park Jong-Jin;Kim Nam-Joon
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.168-172
    • /
    • 2003
  • 본 논문에서는 고주파 스위칭 시 스위칭 손실의 감소, 구현의 용이성 및 인버터 제어를 위하여 요구되는 연산시간 감소 등 다양한 장점을 가진 2-LEG 인버터를 대상으로, 새로운 RPWM(Random PWM) 기법에 의한 3상유도전동기 구동 방식에 대하여 서술한다. 기존의 RPWM 방식과 비교하여 제안한 RPWM 기법으로부터, 10000(rpm) 이상의 고속운전 영역에서의 인버터 출력전류의 고조파 스펙트럼을 넓은 주파수 영역으로(특정주파수의 side band) 고루 분산시켜 RPWM의 고조파 저감효과에 대한 우수성을 입증하고자 한다. 이러한 과정에서 제안된 RPWM 기법을 적용한 알고리즘에 대하여 DSP를 이용한 IGBT 인버터에 의한 실험을 수행하여, 이로부터 그 결과를 검토하여 제안된 기법의 타당성을 검증하고자 한다.

  • PDF

A Three-Phase Parallel Active Power Filter Operating with PCC Voltage Compensation by Controlling Reactive Power (무효전력 제어에 의한 PCC전압 보상을 갖는 삼상 병렬형 능동전력필터)

  • Lee, U-Cheol;Hyeon, Dong-Seok;Lee, Taek-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.211-218
    • /
    • 2000
  • The performance and dynamic characteristics of three-phase active power filter with PCC voltage compensation is presented and analyzed in this paper. The characteristics of parallel active filter are discussed when they are applied to nonlinear loads with current source and voltage source type, the characteristics of voltage compensator and comparison of two functions are discussed. The proposed scheme in this paper employs a PWM voltage-source inverter and has two operation modes. First, it operates as a conventional active filter with reactive power compensation while PCC voltage is in a certain range. Second, is operates as a voltage compensator while PCC voltage is out of range. Finally, the validity of this scheme is investigated through analysis of simulation and experimental results for a prototype active power filter system rated at 10KVA.

  • PDF