• Title/Summary/Keyword: thin-walled composite

Search Result 185, Processing Time 0.026 seconds

Vibration Analysis of Composite-VEM Thin-walled Rotating Beam Using GHM Methodology (GHM 기법을 이용한 회전하는 복합재-VEM 박판보의 진동해석)

  • 박재용;박철휴;곽문규;나성수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.639-647
    • /
    • 2004
  • This paper concerns the analytical modeling and dynamic analysis of advanced rotating blade structure implemented by a dual approach based on structural tailoring and viscoelastic material technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive material technology exploits the damping capabilities of viscoelastic material (VEM) embedded into the host structure. The main structure is modeled as a composite thin-walled beam Incorporating a number of nonclassical features such as transverse shear. anisotropy of constituent materials, and rotary inertia etc. The VEM layer damping treatment is modeled by using the Golla-Hughes-McTavish (GHM) method, which is employed to account for the frequency-dependent characteristics of the VEM. The displayed numerical results provide a comprehensive picture of the synergistic implications of both techniques, namely, the tailoring and damping technology on dynamic response of a thin-walled beam structure exposed to external time-dependent excitation.

Mechanical properties of thin-walled composite beams of generic open and closed sections

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.591-620
    • /
    • 2005
  • A general analytical model for thin-walled composite beams with an arbitrary open/(or/and) closed cross section and arbitrary laminate stacking sequence i.e., symmetric, anti-symmetric as well as un-symmetric with respect to the mid plane of the laminate, is developed in the first paper. All the mechanical properties, mechanical centre of gravity and mechanical shear centre of the cross section are defined in the function of the geometry and the material properties of the section. A program "fungen" and "clprop" are developed in Fortran to compute all the mechanical properties and tested for various isotropic sections first and compared with the available results. The locations of mechanical centre of gravity and mechanical shear centre are given with respect to the fibre angle variation in composite beams. Variations of bending and torsional stiffness are shown to vary with respect to the fibre angle orientations.

Thermal Stability Analysis of Flexible Beam Spacecraft Appendage (위성체 유연 보 구조물의 열 안정성 해석)

  • 윤일성;송오섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.399-406
    • /
    • 2001
  • Thermally induced vibration response of composite thin walled beams is investigated. The thin-walled beam model incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferentially uniform system(CUS) configuration are exploited in connection with the structural bending-torsion coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated.

  • PDF

Cross-sectional Constants of Thin-walled Composite Blades with Elliptical Profiles (타원형 단면형상을 갖는 복합재료 박판 블레이드의 단면상수 계산)

  • 박일주;이주영;정성남;신의섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.95-98
    • /
    • 2003
  • In this work, a closed-form analysis is performed to obtain the stiffness coefficients of thin-walled composites beams with elliptical profiles. The analytical model includes the effects of elastic couplings, shell wall thickness, torsion warping and constrained warping. Reissner's semi-complementary energy functional is used to derive the beam force-displacement relations. The theory is validated against MSC/NASTRAN results for coupled composites beams with single-cell elliptical sections. Very good correlation has been noticed for the test cases considered.

  • PDF

Thermally-Induced Vibration Control of Rotating Composite Thin-Walled Blade (회전하는 복합재 블레이드의 열진동 해석 및 제어)

  • Jung, Hoe-Do;Na, Sung-Soo;Kwak, Mun-Kyu;Heo, Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1696-1701
    • /
    • 2003
  • This paper deals with a vibration control analysis of a rotating composite blade, modeled as a tapered thinwalled beam induced by heat flux. The displayed results reveal that the thermally induced vibration yields a detrimental repercussions upon their dynamic responses. The blade consists of host graphite epoxy laminate with surface and spanwise distributed transversely isotropic (PZT-4) sensors and actuators. The controller is implemented via the negative velocity and displacement feedback control methodology, which prove to overcome the deleterious effect associated with the thermally induced vibration. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, secondary warping, anisotropy of constituent materials, and rotary inertias.

  • PDF

Lateral-torsional buckling analysis of thin-walled composite beam (박벽 복합재료 보의 횡-비틀림 좌굴 해석)

  • 김영빈;이재홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.489-496
    • /
    • 2002
  • The lateral buckling of a laminated composite beam is studied. A general analytical model applicable to the lateral buckling of a composite beam subjected to various types of loadings is derived. This model is based on the classical lamination theory, and accounts for the material coupling for arbitrary laminate stacking sequence configuration and various boundary conditions. The effects of the location of applied loading on the buckling capacity are also included in the analysis. A displace-based one-dimensional finite element model is developed to predict critical loads and corresponding buckling modes for a thin-walled composite beam with arbitrary boundary conditions. Numerical results are obtained for thin-walled composites under central point load, uniformly distributed load, and pure bending with angle-ply and laminates. The effects of fiber orientation location of applied load, and types of loads on the critical buckling loads are parametrically studied.

  • PDF

Structural analysis of circular UHPCC form for hybrid pier under construction loads

  • Wu, X.G.;Zhao, X.Y.;Han, S.M.
    • Steel and Composite Structures
    • /
    • v.12 no.2
    • /
    • pp.167-181
    • /
    • 2012
  • Ultra high performance cementitious composite material is applied to the design of multifunctional permanent form for bridge pier in this paper. The basic properties and calculating constitutive model of ultra high performance cementitious composite are introduced briefly. According to momental theory of thin-walled shell, the analytical solutions of structural behavior parameters including circumferential stress, longitudinal stress and shear stress are derived for UHPCC thin-walled circular tube. Based on relevant code of construction loads (MHURD of PPC 2008), the calculating parameter expression of construction loads for UHPCC thin-walled circular tube is presented. With geometrical dimensions of typical pier, the structural behavior parameters of UHPCC tube under construction loads are calculated. The effects of geometrical parameters of UHPCC tube on structural behavior are analyzed and the design advices for UHPCC tube are proposed. This paper shall provide a scientific reference for UHPCC permanent form design and UHPCC hybrid structure application.

Modeling of two-cell thin-walled beams using variational asymptotic methods (변분적 점근법을 사용한 이중 세포를 갖는 박벽보의 모델링)

  • Park, Jae-Sang;Kim, Ji-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.198-201
    • /
    • 2005
  • This study investigates the difference between single-cell and multi-cell cross-sections of thin-walled beams. The variationally and asymptotically consistent theory is used in order to model the two-cell thin- walled beam. The theory is based on an asymptotical analysis of two-dimensional shell energy. In addition, the method allows for the development of closed-form expressions for the displacement, stress field and beam stiffness coefficients. The numerical results show the difference between the cross-sectional stiffness of single-cell and that of multi-cell.

  • PDF

Vibration Control of Composite Thin-Walled Beams with a Tip Mass Via Fuzzy logic and Piezoelectric Sensors and Actuator (끝단 질량을 가진 복합재료 얇은 벽보의 퍼지이론과 압전 감지기/작동기를 이용한 진동제어)

  • 이윤규;송오섭;민준식;강호식;정남희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.950-957
    • /
    • 2003
  • This paper deals with adaptive fuzzy logic controller design to achieve proper dynamic response of a composite thin-walled beam with a tip mass. In order to check the effectiveness of this controller, three different types of control logic are selected and applied. The adaptive control capabilities provided by a system of piezoactuators bonded or embedded into the structure are also implemented in the system. Results show that the fuzzy logic controller is more effective than the proportional or velocity feedback controller for the vibration control of composit thin-walled beam with a tip mass.

  • PDF

DNA and DNA-CTMA composite thin films embedded with carboxyl group-modified multi-walled carbon nanotubes

  • Dugasani, Sreekantha Reddy;Gnapareddy, Bramaramba;Kesama, Mallikarjuna Reddy;Ha, Tai Hwan;Park, Sung Ha
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.79-86
    • /
    • 2018
  • Although the intrinsic characteristics of DNA molecules and carbon nanotubes (CNT) are well known, fabrication methods and physical characteristics of CNT-embedded DNA thin films are rarely investigated. We report the construction and characterization of carboxyl (-COOH) group-modified multi-walled carbon nanotube (MWCNT-COOH)-embedded DNA and cetyltrimethyl-ammonium chloride-modified DNA (DNA-CTMA) composite thin films. Here, we examine the structural, compositional, chemical, spectroscopic, and electrical characteristics of DNA and DNA-CTMA thin films consisting of various concentrations of MWCNT-COOH. The MWCNT-COOH-embedded DNA and DNA-CTMA composite thin films may offer a platform for developing novel optoelectronics, energy harvesting, and sensing applications in physical, chemical, and biological sciences.