DOI QR코드

DOI QR Code

DNA and DNA-CTMA composite thin films embedded with carboxyl group-modified multi-walled carbon nanotubes

  • Dugasani, Sreekantha Reddy (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Gnapareddy, Bramaramba (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Kesama, Mallikarjuna Reddy (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Ha, Tai Hwan (Hazards Monitoring BNT Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Sung Ha (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
  • Received : 2018.03.29
  • Accepted : 2018.07.25
  • Published : 2018.12.25

Abstract

Although the intrinsic characteristics of DNA molecules and carbon nanotubes (CNT) are well known, fabrication methods and physical characteristics of CNT-embedded DNA thin films are rarely investigated. We report the construction and characterization of carboxyl (-COOH) group-modified multi-walled carbon nanotube (MWCNT-COOH)-embedded DNA and cetyltrimethyl-ammonium chloride-modified DNA (DNA-CTMA) composite thin films. Here, we examine the structural, compositional, chemical, spectroscopic, and electrical characteristics of DNA and DNA-CTMA thin films consisting of various concentrations of MWCNT-COOH. The MWCNT-COOH-embedded DNA and DNA-CTMA composite thin films may offer a platform for developing novel optoelectronics, energy harvesting, and sensing applications in physical, chemical, and biological sciences.

Keywords

Acknowledgement

Supported by : National Research Council of Science and Technology (NST) of Korea, National Research Foundation (NRF) of Korea

References

  1. K.A. Shah, B.A. Tali, Mater. Sci. Semicond. Process. 41 (2016) 67. https://doi.org/10.1016/j.mssp.2015.08.013
  2. D. Fejes, K. Hernadi, Materials 3 (2010) 2618. https://doi.org/10.3390/ma3042618
  3. J.H. Li, K. Otsuka, X. Zhang, S. Maruyama, J. Liu, Nanoscale 8 (2016) 14156. https://doi.org/10.1039/C6NR03642B
  4. J. Hong, Y.X. Zhao, B.L. Xiao, A.A.M. Movahedi, H. Ghourchian, N. Sheibani, Sensors 13 (2013) 8595. https://doi.org/10.3390/s130708595
  5. X. Sun, Y.Y. Cao, Z.L. Gong, X.Y. Wang, Y. Zhang, J.M. Gao, Sensors 12 (2012) 17247. https://doi.org/10.3390/s121217247
  6. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320 (2008) 1308. https://doi.org/10.1126/science.1156965
  7. W.J. Wei, Y.L. Song, W.T. Shi, N.S. Lin, T.J. Jiang, X.X. Cai, Biosens. Bioelectron. 55 (2014) 66. https://doi.org/10.1016/j.bios.2013.11.048
  8. S. Zhang, Y.L. Song, M.X. Wang, Z.M. Zhang, X.Y. Fan, X.T. Song, P. Zhuang, F. Yue, P. Chan, X.X. Cai, Biosens. Bioelectron. 85 (2016) 53. https://doi.org/10.1016/j.bios.2016.04.087
  9. L. Wang, H.R. Xu, Y.L. Song, J.P. Luo, W.J. Wei, S.W. Xu, X.X. Cai, ACS Appl. Mater. Interfaces 7 (2015) 7619. https://doi.org/10.1021/acsami.5b00035
  10. M. Eslami, A.A. Peyghan, Thin Solid Films 589 (2015) 52. https://doi.org/10.1016/j.tsf.2015.04.086
  11. R. Imani, M. Pazoki, A. Tiwari, G. Boschloo, A.P.F. Turner, V.K. Iglic, A. Iglic, Nanoscale 7 (2015) 10438. https://doi.org/10.1039/C5NR02533H
  12. Y.H. Wang, P. Wang, Y.Q. Wang, X.X. He, K.M. Wang, Talanta 141 (2015) 122. https://doi.org/10.1016/j.talanta.2015.03.040
  13. C.G. Hu, Y.Y. Zhang, G. Bao, Y.L. Zhang, M.L. Liu, Z.L. Wang, J. Phys. Chem. B 109 (2005) 20072. https://doi.org/10.1021/jp0550457
  14. S. Shimron, A. Cecconello, C.H. Lu, I. Willner, Nano Lett. 13 (2013) 3791. https://doi.org/10.1021/nl4017539
  15. F. Li, H.Q. Zhang, B. Dever, X.F. Li, X.C. Le, Bioconjug. Chem. 24 (2013) 1790. https://doi.org/10.1021/bc300687z
  16. B.S. Simpkins, K.M. Mccoy, L.J. Whitman, P.E. Pehrsson, Nanotechnology 18 (2007) 355301. https://doi.org/10.1088/0957-4484/18/35/355301
  17. Y.Y. Zhou, L. Tang, G.M. Zeng, C. Zhang, Y. Zhang, X. Xie, Sens. Actuators B 223 (2016) 280. https://doi.org/10.1016/j.snb.2015.09.090
  18. W. Cheung, P.L. Chiu, R.R. Parajuli, Y.F. Ma, S.R. Ali, H.X. He, J. Mater. Chem. 19 (2009) 6465. https://doi.org/10.1039/b823065j
  19. L.J. Huang, R.Q. Yu, X. Chu, Analyst 140 (2015) 4987. https://doi.org/10.1039/C5AN00635J
  20. M.T. Martinez, Y.C. Tseng, N. Ormategui, I. Loinaz, R. Eritja, J. Bokor, Nano Lett. 9 (2009) 530. https://doi.org/10.1021/nl8025604
  21. J. Chlopek, B. Czajkowska, B. Szaraniec, E. Frackowiak, K. Szostak, F. Beguin, Carbon 44 (2006) 1106. https://doi.org/10.1016/j.carbon.2005.11.022
  22. A. Peigney, Nat. Mater. 2 (2003) 15. https://doi.org/10.1038/nmat794
  23. Z. Ming, B.A. Diner, J. Am. Chem. Soc. 126 (2004) 15490. https://doi.org/10.1021/ja0457967
  24. A. Paul, B. Bhattacharya, T.K. Bhattacharyya, IEEE Sens. J. 15 (2015) 2947. https://doi.org/10.1109/JSEN.2014.2384050
  25. A. Paul, B. Bhattacharya, T.K. Bhattacharyya, IEEE Sens. J. 15 (2015) 2774.
  26. F. Zhou, Y. Wang, W. Wu, T. Jing, S. Mei, Y. Zhou, Sci. Rep. 6 (2016) 38000. https://doi.org/10.1038/srep38000
  27. E. Murugan, S. Arumugam, RSC Adv. 4 (2014) 35428. https://doi.org/10.1039/C4RA04646C
  28. F. Xiao, X. Luo, X. Fu, Y. Zheng, J. Phys. Chem. B 117 (2013) 4893. https://doi.org/10.1021/jp400852p
  29. S.B. Mitta, S.R. Dugasani, S.G. Jung, S. Vellampatti, T. Park, S.H. Park, Nanotechnology 28 (2017) 405703. https://doi.org/10.1088/1361-6528/aa871d
  30. S.L.H. Rebelo, A. Guedes, M.E. Szefczyk, A.M. Pereira, J.P. Araujo, C. Freire, Phys. Chem. Chem. Phys. 18 (2016) 12784. https://doi.org/10.1039/C5CP06519D
  31. A.K. Sharma, A. Mahajan, R.K. Bedi, S. Kumar, A.K. Debnath, D.K. Aswal, RSC Adv. 7 (2017) 49675. https://doi.org/10.1039/C7RA08987B
  32. B. Gnapareddy, T. Ha, S.R. Dugasani, J. Kim, B. Kim, T. Kim, J.H. Kim, S.H. Park, RSC Adv. 5 (2015) 39409. https://doi.org/10.1039/C5RA02924D
  33. W. Ke, D. Yu, J. Wu, Spectrochim. Acta A 55 (1999) 1081. https://doi.org/10.1016/S1386-1425(98)00225-X
  34. S.R. Dugasani, J. Kim, B. Kim, P. Joshirao, B. Gnapareddy, C. Vyas, T. Kim, S.H. Park, V. Manchanda, ACS Appl. Mater. Interfaces 6 (2014) 2974. https://doi.org/10.1021/am4055723
  35. D.K. Jangir, S.K. Dey, S. Kundu, R. Mehrotra, J. Photochem. Photobiol. B. 114 (2012) 38. https://doi.org/10.1016/j.jphotobiol.2012.05.005
  36. S.R. Dugasani, M. Kim, I. Lee, J. Kim, B. Gnapareddy, K.W. Lee, T. Kim, N. Huh, G. H. Kim, S.C. Park, S.H. Park, Nanotechnology 26 (2015) 275604. https://doi.org/10.1088/0957-4484/26/27/275604
  37. K. Dai, T.Y. Peng, D.N. Ke, B.Q. Wei, Nanotechnology 20 (2009) 125603. https://doi.org/10.1088/0957-4484/20/12/125603
  38. A.A. Ouameur, H.A.T. Riahi, J. Biol. Chem. 279 (2004) 42041. https://doi.org/10.1074/jbc.M406053200
  39. B. Gnapareddy, S.R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J.H. Kim, K. Oh, S.H. Park, Sci. Rep. 5 (2015) 12722. https://doi.org/10.1038/srep12722
  40. S.R. Dugasani, T. Ha, B. Gnapareddy, K. Choi, J. Lee, B. Kim, J.H. Kim, S.H. Park, ACS Appl. Mater. Interfaces 6 (2014) 17599. https://doi.org/10.1021/am503614x
  41. S.R. Dugasani, T. Ha, S. Kim, B. Gnapareddy, S. Yoo, K.W. Lee, T. Jung, H. Kim, S.H. Park, J.H. Kim, J. Phys. Chem. C 19 (2015) 14443.

Cited by

  1. Optoelectronic properties of DNA thin films implanted with titania nanoparticle-coated multiwalled carbon nanotubes vol.9, pp.1, 2018, https://doi.org/10.1063/1.5063446
  2. Large-Scale Fabrication of Copper-Ion-Coated Deoxyribonucleic Acid Hybrid Fibers by Ion Exchange and Self-Metallization vol.4, pp.15, 2018, https://doi.org/10.1021/acsomega.9b02073
  3. Chemical and physical characteristics of hydroxyl group-modified multi-walled carbon nanotube-combined DNA layers vol.52, pp.41, 2018, https://doi.org/10.1088/1361-6463/ab31c6
  4. Band gap, dielectric constant, and susceptibility of DNA layers as controlled by vanadium ion concentration vol.31, pp.8, 2018, https://doi.org/10.1088/1361-6528/ab53b0
  5. DNA-Induced Assembly of Silver Nanoparticle Decorated Cellulose Nanofiber: A Flexible Surface-Enhanced Raman Spectroscopy Substrate for the Selective Charge Molecular Detection and Wipe Test of Pestic vol.9, pp.14, 2018, https://doi.org/10.1021/acssuschemeng.1c00788
  6. Spatially selective DNA deposition on the fiber core by optically trapping an aqueous droplet and its application for ultra-compact DNA Fabry-Perot temperature sensor vol.3, pp.None, 2018, https://doi.org/10.1016/j.snr.2021.100038
  7. DNAzyme-Amplified Electrochemical Biosensor Coupled with pH Meter for Ca2+ Determination at Variable pH Environments vol.12, pp.1, 2022, https://doi.org/10.3390/nano12010004
  8. Fibres and films made from DNA and CTMA-modified DNA embedded with gold nanorods and organic light-emitting materials vol.211, pp.None, 2018, https://doi.org/10.1016/j.colsurfb.2021.112291