Browse > Article
http://dx.doi.org/10.1016/j.jiec.2018.07.031

DNA and DNA-CTMA composite thin films embedded with carboxyl group-modified multi-walled carbon nanotubes  

Dugasani, Sreekantha Reddy (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
Gnapareddy, Bramaramba (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
Kesama, Mallikarjuna Reddy (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
Ha, Tai Hwan (Hazards Monitoring BNT Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Park, Sung Ha (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
Publication Information
Journal of Industrial and Engineering Chemistry / v.68, no., 2018 , pp. 79-86 More about this Journal
Abstract
Although the intrinsic characteristics of DNA molecules and carbon nanotubes (CNT) are well known, fabrication methods and physical characteristics of CNT-embedded DNA thin films are rarely investigated. We report the construction and characterization of carboxyl (-COOH) group-modified multi-walled carbon nanotube (MWCNT-COOH)-embedded DNA and cetyltrimethyl-ammonium chloride-modified DNA (DNA-CTMA) composite thin films. Here, we examine the structural, compositional, chemical, spectroscopic, and electrical characteristics of DNA and DNA-CTMA thin films consisting of various concentrations of MWCNT-COOH. The MWCNT-COOH-embedded DNA and DNA-CTMA composite thin films may offer a platform for developing novel optoelectronics, energy harvesting, and sensing applications in physical, chemical, and biological sciences.
Keywords
DNA; MWCNT; Composite thin film; X-ray photoelectron spectroscopy; Absorption;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C.G. Hu, Y.Y. Zhang, G. Bao, Y.L. Zhang, M.L. Liu, Z.L. Wang, J. Phys. Chem. B 109 (2005) 20072.   DOI
2 S. Shimron, A. Cecconello, C.H. Lu, I. Willner, Nano Lett. 13 (2013) 3791.   DOI
3 F. Li, H.Q. Zhang, B. Dever, X.F. Li, X.C. Le, Bioconjug. Chem. 24 (2013) 1790.   DOI
4 B.S. Simpkins, K.M. Mccoy, L.J. Whitman, P.E. Pehrsson, Nanotechnology 18 (2007) 355301.   DOI
5 Y.Y. Zhou, L. Tang, G.M. Zeng, C. Zhang, Y. Zhang, X. Xie, Sens. Actuators B 223 (2016) 280.   DOI
6 W. Cheung, P.L. Chiu, R.R. Parajuli, Y.F. Ma, S.R. Ali, H.X. He, J. Mater. Chem. 19 (2009) 6465.   DOI
7 L.J. Huang, R.Q. Yu, X. Chu, Analyst 140 (2015) 4987.   DOI
8 M.T. Martinez, Y.C. Tseng, N. Ormategui, I. Loinaz, R. Eritja, J. Bokor, Nano Lett. 9 (2009) 530.   DOI
9 J. Chlopek, B. Czajkowska, B. Szaraniec, E. Frackowiak, K. Szostak, F. Beguin, Carbon 44 (2006) 1106.   DOI
10 A. Peigney, Nat. Mater. 2 (2003) 15.   DOI
11 Z. Ming, B.A. Diner, J. Am. Chem. Soc. 126 (2004) 15490.   DOI
12 A. Paul, B. Bhattacharya, T.K. Bhattacharyya, IEEE Sens. J. 15 (2015) 2947.   DOI
13 A. Paul, B. Bhattacharya, T.K. Bhattacharyya, IEEE Sens. J. 15 (2015) 2774.
14 F. Zhou, Y. Wang, W. Wu, T. Jing, S. Mei, Y. Zhou, Sci. Rep. 6 (2016) 38000.   DOI
15 E. Murugan, S. Arumugam, RSC Adv. 4 (2014) 35428.   DOI
16 F. Xiao, X. Luo, X. Fu, Y. Zheng, J. Phys. Chem. B 117 (2013) 4893.   DOI
17 B. Gnapareddy, T. Ha, S.R. Dugasani, J. Kim, B. Kim, T. Kim, J.H. Kim, S.H. Park, RSC Adv. 5 (2015) 39409.   DOI
18 S.B. Mitta, S.R. Dugasani, S.G. Jung, S. Vellampatti, T. Park, S.H. Park, Nanotechnology 28 (2017) 405703.   DOI
19 S.L.H. Rebelo, A. Guedes, M.E. Szefczyk, A.M. Pereira, J.P. Araujo, C. Freire, Phys. Chem. Chem. Phys. 18 (2016) 12784.   DOI
20 A.K. Sharma, A. Mahajan, R.K. Bedi, S. Kumar, A.K. Debnath, D.K. Aswal, RSC Adv. 7 (2017) 49675.   DOI
21 W. Ke, D. Yu, J. Wu, Spectrochim. Acta A 55 (1999) 1081.   DOI
22 S.R. Dugasani, J. Kim, B. Kim, P. Joshirao, B. Gnapareddy, C. Vyas, T. Kim, S.H. Park, V. Manchanda, ACS Appl. Mater. Interfaces 6 (2014) 2974.   DOI
23 D.K. Jangir, S.K. Dey, S. Kundu, R. Mehrotra, J. Photochem. Photobiol. B. 114 (2012) 38.   DOI
24 S.R. Dugasani, M. Kim, I. Lee, J. Kim, B. Gnapareddy, K.W. Lee, T. Kim, N. Huh, G. H. Kim, S.C. Park, S.H. Park, Nanotechnology 26 (2015) 275604.   DOI
25 S.R. Dugasani, T. Ha, B. Gnapareddy, K. Choi, J. Lee, B. Kim, J.H. Kim, S.H. Park, ACS Appl. Mater. Interfaces 6 (2014) 17599.   DOI
26 K. Dai, T.Y. Peng, D.N. Ke, B.Q. Wei, Nanotechnology 20 (2009) 125603.   DOI
27 A.A. Ouameur, H.A.T. Riahi, J. Biol. Chem. 279 (2004) 42041.   DOI
28 B. Gnapareddy, S.R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J.H. Kim, K. Oh, S.H. Park, Sci. Rep. 5 (2015) 12722.   DOI
29 S.R. Dugasani, T. Ha, S. Kim, B. Gnapareddy, S. Yoo, K.W. Lee, T. Jung, H. Kim, S.H. Park, J.H. Kim, J. Phys. Chem. C 19 (2015) 14443.
30 K.A. Shah, B.A. Tali, Mater. Sci. Semicond. Process. 41 (2016) 67.   DOI
31 D. Fejes, K. Hernadi, Materials 3 (2010) 2618.   DOI
32 J.H. Li, K. Otsuka, X. Zhang, S. Maruyama, J. Liu, Nanoscale 8 (2016) 14156.   DOI
33 W.J. Wei, Y.L. Song, W.T. Shi, N.S. Lin, T.J. Jiang, X.X. Cai, Biosens. Bioelectron. 55 (2014) 66.   DOI
34 J. Hong, Y.X. Zhao, B.L. Xiao, A.A.M. Movahedi, H. Ghourchian, N. Sheibani, Sensors 13 (2013) 8595.   DOI
35 X. Sun, Y.Y. Cao, Z.L. Gong, X.Y. Wang, Y. Zhang, J.M. Gao, Sensors 12 (2012) 17247.   DOI
36 R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320 (2008) 1308.   DOI
37 S. Zhang, Y.L. Song, M.X. Wang, Z.M. Zhang, X.Y. Fan, X.T. Song, P. Zhuang, F. Yue, P. Chan, X.X. Cai, Biosens. Bioelectron. 85 (2016) 53.   DOI
38 L. Wang, H.R. Xu, Y.L. Song, J.P. Luo, W.J. Wei, S.W. Xu, X.X. Cai, ACS Appl. Mater. Interfaces 7 (2015) 7619.   DOI
39 M. Eslami, A.A. Peyghan, Thin Solid Films 589 (2015) 52.   DOI
40 R. Imani, M. Pazoki, A. Tiwari, G. Boschloo, A.P.F. Turner, V.K. Iglic, A. Iglic, Nanoscale 7 (2015) 10438.   DOI
41 Y.H. Wang, P. Wang, Y.Q. Wang, X.X. He, K.M. Wang, Talanta 141 (2015) 122.   DOI