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Abstract 

This paper deals with a vibration control analysis of a rotating composite blade, modeled as a tapered thin-
walled beam induced by heat flux. The displayed results reveal that the thermally induced vibration yields a 
detrimental repercussions upon their dynamic responses. The blade consists of host graphite epoxy laminate 
with surface and spanwise distributed transversely isotropic (PZT-4) sensors and actuators. The controller is 
implemented via the negative velocity and displacement feedback control methodology, which prove to 
overcome the deleterious effect associated with the thermally induced vibration. The structure is modeled as a 
composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, 
secondary warping, anisotropy of constituent materials, and rotary inertias. 

1. Introduction 

The increasing use of fiber-reinforced, composite, 
thin-walled beam construction for rotor blades used in 
helicopter, tilt rotor aircraft, turbo engine and other 
applications, has generated a great deal of research 
activity aimed at enhancing their dynamic response 
performances. For reasons of efficiency involving gas 
dynamics and weight, they must be thin, yet to operate in 
severe thermal environments and at higher rotational 
speeds. Both the dynamic equations involving the 
temperature effects and the related boundary conditions 
are obtained via the application of Hamilton’s variational 
principle. In its modeling the effects of anisotropy of 
constituent materials, transverse shear, warping, rotatory  
inertia, etc are incorporated. In addition, in order to 
induce elastic couplings between flapwise bending and 
chordwise bending, a special ply-angle distribution 

achieved via the usual helically wounding fiber-
reinforced technology is implemented. The numerical 
simulations display deflection time-history as a function 
of the fiber orientation of the composite materials, 
rotating speed, taper ratio as well as control efficiency. 

Boley[1] was the first to include inertia effects in 
calculating the thermal-structural response of a beam 
subject to rapid heating and presented the governing 
equations for the problem of thermally induced 
vibrations. Seibert and Rice[2] investigated coupled 
thermoelastic effect for Euler-Bernoulli and Timoshenko 
beam model. Johnston and Thornton[3] analyzed the 
effects of thermally induced structural disturbances of an 
appendage on the dynamics of a simple spacecraft. 
Numerical results showed that the system dynamic 
response consisted of a slowly developed pointing error 
and superimposed oscillations, whose magnitude was 
related to the ratio of the thermal and structural response 
times of the appendage.  

The coupled thermal-structural analysis that 
includes the effects of structural deformations on heating 
and temperature gradients is used to investigate the 
unstable motion. Thornton and Kim[4] developed an 
analytical approach to determine the thermal-structural 
response of a flexible rolled-up solar array due to a 
sudden increase in the external heating. The coupled 
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thermal-structural analysis responses were compared 
with the uncoupled analysis results. I. Yoon and O. 
Song[5] investigated thermally induced vibration of 
composite thin-walled beam. The structure is modeled as 
a circular thin-walled beam of closed cross section and 
has constant cross area ratio.  

Although of an evident importance, to the best of 
authors’ knowledge, no such studies including thermal-
induced vibration control of rotating composite thin-
walled blade. 
 

2. Thermal Analysis 

2.1 Basic Assumption 
A thin-walled beam of radius R and wall thickness is 

considered (Fig. 1). The blade is subjected to a known 
incident heat flux S applied at time t=0. The problem is 
to determine the transient temperature response of the 
tip. To this end, the following assumptions are adopted. 

1. Heat is conducted only in the circumferential 
direction, implying that the heat conduction along 
the blade length is negligible, 

2. Thermal energy losses at the cantilevered support 
at x=0 are neglected, and thermal energy is 
emitted from external surface of the blade 
assuming diffuse radiation, but internal radiation 
within the blade is neglected, 

3. The temperature field is assumed to be uniform 
across the beam thickness, implying that the 
temperature gradient across it is neglected, 

4. Convection heat transfer inside and outside the 
beam is negligible, 

 
a) Heat flux      b) Beam Cross section  

 

 

Fig.1 Heat flux for coupled thermal-structural analysis 
 
In such a context, the thermodynamic equation of heat 
conduction and radiation is 

2
4 0

2 2 cos cos( )x
ST k T T

t cR ch ch
ασε δ φ β θ

ρ φ ρ ρ
∂ ∂

− + =
∂ ∂

+  (1)            

In Eq. (1), Tª(z,φ,t) is the absolute temperature at an 
arbitrary point of beam, k is the thermal conductivity, ρ 
and c are the weight density and the specific heat of the 
material, respectively, t is time coordinate and δ is unity 
for the values of circumferiantial coordinate φ 
corresponding to the portion of beam surface exposed to 

radiation and zero otherwise. The heat flux intensity of 
radiation source at an angle β with respect to the 
direction normal to the undeflected beam axis, S0 , is 
related to the counterpart one at an arbitrary point of the 
deflected beam surface, S, by 

0 cos( )xS S β θ= +             (2) 
The thermodynamic equation of heat-conduction-

radiation can be linearized. As a result, one can represent 
T as 

 0 1( , , ) ( , , )T z t T T z tφ φ= +          (3) 
where T1(z,φ,t) is the disturbance temperature, T0 is the 
steady-state absolute temperature fulfilling the condition 
T0¨T1(z,φ,t). 
 Further, we will consider 

1
ˆ( , , ) ( , )cosT z t T z tφ φ=            (4) 

where  is the maximum disturbance temperature. As 
a result of (3), T

T̂
4(z,φ,t) intervening in Eq. (1) is 

expressed as a truncated binomial series expansion about 
T0 in the form 

4 4 3
0 0

ˆ( , , ) 4 ( , )cosT z t T T T z tφ φ≅ +         (5) 
Moreover, the heat flux distribution on the right of Eq. 
(1) is represented as: 

3 1 3 3cos cos
2 2 4

δ φ φ
π π

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
       (6) 

By virtue of Eqs. (5) and (6), from Eq. (1) on obtain 
1/ 4

0
cos3

2
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π σε
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⎝ ⎠

⎞
⎟             (7) 
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ST
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  (9) 

 A characteristic time and the time-independent 
maximum disturbance temperature when the blade is 
deflected statically. Assuming zero initial conditions, 
from Eq. (8) on obtains  

/ *
/

0
ˆ( , ) cos( )

t t p t
x

e TT z t e dp
τ

β θ
τ

−

= +∫     (10) 

where p is a dummy time variable. It is readily seen that 
the disturbance temperature as expressed by Eq. (10) 
depends nonlinearly on qx. Assuming qx to be small, one 
can linearize  

ˆ( , )T z t as to become 
/ *

/

0
ˆ( , ) (cos sin )

t t p t
x

e TT z t e dp
τ

β θ
τ

−

= −∫   (11a) 

Assuming that the beam is deflected statically, one 
can readily determine from (11a) the quasi-steady 
counterpart of  T̂

* /ˆ( , ) (1 ) costT z t T e τ β−= −         (11b) 

 By virtue of (11b),  assumes a uniform behavior T̂
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in the spanwise direction.. Moreover, the steady-state 
counterpart of (11b) results as *ˆ cosT T β= . 

3. Formulation of The Composite Thin-

Walled Beam Model 

3.1 Basic Assumptions and Kinematics of the 
Modeling Formulation 

The tapered composite blade consisting of a single 
cell thin-walled beam is mounted on a rigid hub (radius 
R0) that rotates with constant angular velocity W about 
origin O (Fig. 2). 
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   Fig.2 Geometric Configuration of the rotating blade 
 
The inertial reference system (X, Y, Z) is attached to 

the center of the hub O. By (i, j, k) and (I, J, K), we 
define the unit vectors associated with the coordinate 
systems (x, y, z) and (X, Y, Z), respectively. The 
equations of rotating thin-walled beam are based on the 
following statements[6,7,8]: (i) the original cross-section 
of the beam is preserved; (ii) the secondary warping 
effects are included; (iii) transverse shear, Coriolis effect, 
and centrifugal acceleration are incorporated; and finally, 
(iv) the constituent material of the structure features 
thermomechanical anisotropic properties. 

The linear distribution of the chord ( )c η and height 
( )b η of the mid-line cross-section profiles along the 

beam span is considered as 

              (12) [ ]( )
1 (1 )

( )
R

R

cc
bb

η
η σ

η
⎧ ⎫⎧ ⎫

= − −⎨ ⎬ ⎨
⎩ ⎭ ⎩ ⎭

 

⎬

Herein /T Rc cσ ≡  denotes the taper ratio, /z Lη ≡ is 
the dimensionless spanwise coordinate, where L denotes 
the beam semi-span, and subscripts R and T identify its 
characteristics at the root and tip cross-sections, 
respectively. In the same context, the radius of curvature 
of the circular arc associated with the midline contour at 
section η  along the beam span varies according to the 
relationship: 

[ ]( ) 1 (1 ) RR Rη η σ= − −            (13) 
The points of the beam cross-sections are identified 

by the global coordinates x, y and z, where z is the 
spanwise coordinate and by a local one, n, s, and z, 

where n and s denote the thicknesswise coordinate 
normal to the beam mid-surface and the tangential one 
along the contour line of the beam cross-section, 
respectively. (see Fig. 2) Following coordinates 
description, qx(z,t) and qy(z,t) denote the rotations about 
axes x and y respectively, while gyz and gxz denote the 
transverse shear in the planes yz and xz respectively and 
the primes denote derivatives with respect to the z-
coordinate. respectively  

In accordance with the above assumptions and in 
order to reduce the 3-D problem to an equivalent 1-D, 
the components of the displacement vector are expressed 
as [6] 

 
0

0

0

( , , , ) ( , )
( , , , ) ( , )

( , , , ) ( , ) ( , )[ ( ) ]

                  ( , )[ ( ) ]

                  ( , )[ ( ) ( )]

x

y

w

u x y z t u y z t
v x y z t v x z t

dxw x y z t w z t z t y s n
ds

dyz t x s n
ds

z t F s na s

φ
φ

θ

θ

φ

= −
= +

= + −

+ +

′− +

     (14) 

0

0

( , ) ( , ) ( , )

( , ) ( , ) ( , )

x yz

y xz

z t z t v z t

z t z t u z t

θ γ

θ γ

′= −

′= −
                (15) 

Eqs. (14) and (15) reveal that the kinematic variables, 
u0(z,t), v0(z,t), w0(z,t), θx(z,t), θy(z,t) and φ(z,t) 
representing three translations in the x, y, z directions and 
three rotations about the x, y, z directions, respectively 
are used to define the displacement components, u, v and 
w.  

Notice that the z - axis is located as to coincide with 
the locus of symmetrical points of the cross-section 
along the wing span. 

The kinetic energy K, and potential energy V, 
expressions for a beam are 

( )0 ( )
1

1 (R R )
2
1
2
1  [ ]
2

i i

bij bij

NL

b zz b zz bsz bsz bnz bnz kC h k
k

K d

V d

dndsdz

τ

τ

ρ τ

σ ε τ

σ ε σ γ σ γ
=

= ⋅

=

= + +

∫

∫

∑∫ ∫ ∫

         

            (16) 
The expressions for the virtual work done by 

externally applied forces are 

0
( , ) ( , )

L

fW f z t v z tδ∂ = ∫ dz           (17) 

In these equations dt(Ûdndsdz) denotes the 
differential volume element and the position vector 
RÛR(x,y,z,t) relative to a fixed origin O, of a point the 
deformed beam is defined as: 

0R R r ∆= + +                  (18) 
In eq. (18), r(Ûxi+yj+zk) defines the undeformed 

position of a point measured in the beam coordinate 
system and D(Ûui+vj+wk) denotes the displacement 
vectors of the points of the blades, while R0= R0k. 
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3.2 The Equations of Motion and Boundary 
conditions 

In order to obtain the coupled bending equations of 
adaptive rotating beams and the associated boundary 
conditions, the extended Hamilton’s principle is applied. 

 

2

0,

( )
1

0

0 0 1

0

0 at ,

t

t

x y

K V W dt

u v t t t

δ δ δ

δ δ δθ δθ

− + =

= = = = =
∫    (19) 

Herein K and V denote the kinetic and strain energy, 
respectively, dW is the virtual work of external forces, t1 
and t2 are two arbitrary instants of time, while d is the 
variational operator.  
 

The Equations Governing the (flap-lag) Bending-
Transverse Shear Motion: 

2 2
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The associated BCs for the rotating beams clamped at 
z=0 and free at z=L are: 
At =0, z 0 0 0y xu v θ θ= = = =              (21a-d)                    
At =L, z

43 44 0 4

52 55 0 5

22 25 0 2

33 34 0 3

( ) ,

( ) ,

( )

( )

T
x y

T
y x

T a
y x

T a

,y

x y x

a a u h

a a v h

a a v h M

a a u h M

θ θ

θ θ

θ θ

θ θ

′ ′+ + =

′ ′+ + =

′′ ′+ + = −

′′ ′+ + = −

           (22a-d) 

In Eqs. (20) through (22), aij, bi denote global 
stiffness and mass quantities, respectively. P(z) is 
obtained as  

( )1 0( ) ( )
L

z
P z b z R z dz= +∫             (23) 

and hi
T(Ûhi

T (z,t)) denote the thermal stress-resultants and 
thermal stress-couples defined as: 

2 4

3 5

1 4 2

1 4 2

( ) ,   
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C

T T T T T

C

dy dxh xN N ds h N ds
ds ds
dx dyh yN N ds h N
ds ds

= + =

= − =

∫ ∫

∫ ∫

C

C
ds

]
]

2

  (24a-d) 

 
3.3 Piezoelectric Distribution and the Control Law 

For the general case, the expression of the 
piezoelectrically induced bending moment is given by 

[
[

1

1 2

( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( )

a
x x

a
y y

M z t C V t H z z H z z

M z t C V t H z z H z z

′ = − −

′ = − −

−

−
    (25a,b) 

where Cx,Cy is a constant dependent on the mechanical 
and geometrical properties of the piezoactuator and host 

structure and V(t) is the applied input voltage that is 
equal and opposite in sign in the upper and lower 
piezoactuators(out-of-phase actuation). H(·) denotes the 
Heaviside function representing the actuator distribution. 
(Fig. 3) 
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Fig. 3 Distribution of Piezoactutors 

 

In the previously displayed equations, due to the 
special distribution of piezoactuators, it was shown that 
the piezoelectrically induced moment intervenes solely 
in the boundary conditions associated with the bending 
motion, prescribed at the beam tip, and hence it plays the 
role of the boundary moment control. Within the adopted 
feedback control law the piezoelectrically induced 
bending moment at the blade tip is expressed as  

( ) ( ) ( )       

( ) ( ) ( )

a
x vx x px x

a
y vy y py y

M L k L k L

M L k L k L

θ θ

θ θ

′ = +

′ = +
       (26a,b) 

Herein kx, ky denotes the velocity feedback gain, and in 
the numerical simulations nondimensional counterpart of 
kx, ky is Kx, Ky defined by 

2 0 2 0
33 33

2 0 2 0
22 22

/     , /

/     , /
vx vx px px

vy vy py py

K k L a K k L a

K k L a K k L a

= =

= =
     (27a,b) 

 

4. Numerical Simulations 

A numerical study was performed to investigate the 
dynamic response of the system consisting of a rotating 
composite thin-walled blade exposed to an incident heat 
flux applied instantaneously at t=0. The data on which 
basis the numerical simulations have been generated are 
supplied in Table 1(Appendix). 

Figs. 4 through 6 highlight the effects of angular 
velocity Ω and ply angle orientation on the natural 
frequencies of the coupled bending (flap-lag). The result 
displayed in Figs. 4 through 6 reveal the sensitivity of 
modal frequencies to ply angle orientation. This 
characteristic of composite materials provides a powerful 
tool in efforts to structurally tailored helicopter and tilt 
rotor aircraft blades for improved dynamic responses. 

Figs. 7 and 8 highlight the effect of the incident angle 
of heat flux and of taper ratio on the dynamic response 
behavior. The results reveal that taper ratio plays a 
significant role in confining the deflection response. Fig. 
9 displays the time-history of transversal and tangential 
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deflection response. This graph highlights the strong 
effect played by the angular velocity. In fig. 10 there are 
depictions of uncontrolled and controlled flapping 
response time-history of a blade subjected to heat flux. 
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Fig. 4 First coupled flap-lag bending frequency  
vs. Ω for different ply angles 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 Second coupled flap-lag bending frequency  

vs. Ω for different ply angles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Third coupled flap-lag bending frequency 
    vs. Ω for different ply angles 
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Fig. 7 Nondimensional lagging response for various 
heat incident angle, θ=30o, Ω=200 rad/s 
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Fig. 10 uncontrolled and controlled flapping response for 
various angular velocity, σ=2, θ=30o, β=15o

5. Conclusions 

A comprehensive structural model of rotating 
composite thin-walled blade was developed and the 
problem of the thermally induced vibrations was 
addressed. 

The effects of the heat incident angle, rotating speed, 
blade taper ratios and ply angles of composite materials 
to the dynamic response of the fan blade are studied by 
using the coupled thermal-structural analysis. blade taper 
ratios and ply angles of composite materials may 
decrease the quasi-static and dynamic deflection of the 
blade. 
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Appendix 

 
Table. 1 Material and geometric properties of composite 

material (Graphite/Epoxy) 
Parameter Value 

L 2.032 m 
h 2.35E-4 m 
R 0.254 m 
E1 2.068E11 N/m2

E2=E3 5.171E9 N/m2

G12 3.103E9 N/m2

G23=G31 2.551E9 N/m2

m12=m23=m13 0.25 
r 1528.227 kg/m3

a 0.92 
a1 1.1E-6 K-1

a2 25.2E-6 K-1

e 0.84 
s 5.67E-8 W/m2K4

k 1.731 W/mK 
c 1044 J/kgK 
S0 1.35E3 W/m2
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