• Title/Summary/Keyword: thin substrate

Search Result 4,055, Processing Time 0.03 seconds

Dielectric Properties of PZT(4060/6040) Multilayered Thin Films with Substrate Temperature (기판온도에 따른 PZT(4060)/(6040) 다층 박막의 유전 특성)

  • Han, Sang-Wook;Lee, Sang-Hyun;Lee, Sung-Gab;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.667-670
    • /
    • 2004
  • The dielectric properties of PZT(4060)/(6040) multilayered thin films with substrate temperature were investigated. PZT(4060)/(6040) thin films were deposited by RF sputtering method on Pt/Ti/$SiO_2$/Si substrates with different substrate temperature of $200{\sim}700^{\circ}C$. Increasing the substrate temperature, perovskite structure was increased, and PZT (001), (110), (002), (200) peaks were increased. The relative dielectric constant and dielectric loss of PZT(4060)/(6040) multilayered thin films at the substrate temperature of $700^{\circ}C$ were 843 and 2.45, respectively at 1000(Hz).

  • PDF

Deposition of Carbon Thin Film using Laser Ablation and Its Field Emission Properties (레이저 증착법에 의한 탄소계 박막의 구조 및 전계방출특성)

  • ;Kenjiro Oura
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.634-639
    • /
    • 2002
  • Using laser ablation technique carbon thin films were deposited on Si(100) substrate as a function of substrate temperature. In this study, the surface morphologic, structural and field emission properties of these carbon thin films were investigated using Raman spectroscopy, scanning electron microscopy, and a diode technique, respectively. With increasing of the substrate temperature, the surface morphologies were changed significantly. Moreover, the intensity of D-band and the full width at half maximum of these bands were dependent on substrate temperatures. As the substrate temperature was increased, the field emission properties were improved. As the result, we find that the field emission properties of the films were changed significantly with the substrate temperature and structural features of carbon than films.

The study of crystallization to Si films deposited using a sputtering method on a Mo substrate (Mo기판 위에 sputtering 법으로 성장된 Si 박막의 결정화 연구)

  • 김도영;고재경;박중현;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.36-39
    • /
    • 2002
  • Polycrystalline silicon (poly-Si) thin film transistor (TFT) technology is emerging as a key technology for active matrix liquid crystal displays (AMLCD), allowing the integration of both active matrix and driving circuit on the same substrate (normally glass). As high temperature process is not used for glass substrate because of the low softening points below 450$^{\circ}C$. However, high temperature process is required for getting high crystallization volume fraction (i.e. crystallinity). A poly-Si thin film transistor has been fabricated to investigate the effect of high temperature process on the molybdenum (Mo) substrate. Improve of the crystallinity over 75% has been noticed. The properties of structural and electrical at high temperature poly-Si thin film transistor on Mo substrate have been also analyzed using a sputtering method

  • PDF

Effect of the Substrate Temperature on the Copper Oxide Thin Films

  • Park, Ju-Yeon;Gang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.71-71
    • /
    • 2010
  • Copper oxide thin films were deposited on the p-type Si(100) by r.f. magnetron sputtering as a function of different substrate temperature. The deposited copper oxide thin films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), spectroscopic ellipsometry (SE), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The SEM and SE data show that the thickness of the copper oxide films was about 170 nm. AFM images show that the surface roughness of copper oxide films was increased with increasing substrate temperature. As the substrate temperature increased, monoclinic CuO (111) peak appeared and the crystal size decreased while the monoclinic CuO (-111) peak was independent on the substrate temperature. The oxidation states of Cu 2p and O 1s resulted from XPS were not affected on the substrate temperature. The contact angle measurement was also studied and indicated that the surface of copper oxide thin films deposited high temperature has more hydrophobic surface than that of deposited at low temperature.

  • PDF

Properties Electric of AIN Thin Film on the Si and GaAs Substrate (Si와 GaAs기판 위에 AIN 박막의 전기적 특성)

  • Park, Jung-Cheul;Chu, Soon-Nam;Kwon, Jung-Youl;Lee, Heon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.5-11
    • /
    • 2008
  • To study the effects of $H_2$ gas on AIN insulation thin film, we prepared AIN thin film on Si and GaAs substrate by means of reactive sputtering method using $H_2$ gas as an additives, With treatment conditions of $H_2$ gas AIN thin film shows variable electrical properties such as its crystallization and hysterisis affected to electrical property, As a results, AIN thin film fabricated on Si substrate post-treated with $H_2$ gas for 20 minutes shows much better an insulation property than that of pre-treated, And AIN film treated with $H_2$ gas comparing to non-treated AIN film shows a flat band voltage decreasment. But In GaAs substrate $H_2$ gas does not effect on the flat band voltage.

Effect of MgO Buffer Layer on the Structural Properties of Sputter-grown ZnO Thin Film (스퍼터링법으로 증착된 산화아연 박막의 구조적 성질에 대한 산화마그네슘 완충층의 효과 연구)

  • Lim, Young-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.673-678
    • /
    • 2009
  • The effect of MgO buffer layer on the structural properties of sputter-grown ZnO thin film was investigated. Sapphire (0001) and Si (100) substrate were used for the growth and MgO buffer layer was inserted between ZnO thin film and the substrate. X-ray diffraction pattern indicated that enhanced crystallinity in the ZnO thin film grown was achieved by inserting very thin MgO buffer layer, regardless of the substrate type. The strain in the ZnO thin film could also be controlled by the insertion of the MgO buffer layer, and tendency of the strain was strongly dependent on the substrate type.

Precise Determination of the Complex Refractive Index and Thickness of a Very Weakly Absorbing Thin Film on a Semi-transparent Substrate Using Reflection Ellipsometry and Transmittance Analysis (반사 타원법과 투과율 분석법을 사용한 반투명 기층 위 매우 약한 광흡수 박막의 두께와 복소굴절률 정밀 결정)

  • Sang Youl Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Explicit expressions for the transmission pseudo-ellipsometric constants and transmittance of a semi-transparent glass substrate coated with thin films are presented to determine the optical constants of a very weakly absorbing thin film coated on a glass substrate. The intensity of the multiply reflected light inside the semi-transparent substrate is superposed incoherently and the light absorption by the substrate is properly treated, so that modeling analysis of thin films coated on a semi-transparent substrate can be performed with increased accuracy. The extinction coefficient derived from transmittance analysis is compared to that from ellipsometric analysis in the weakly absorbing region, and the difference between the two extinction coefficients is discussed in relation to the sensitivities of the transmittance and ellipsometric constants. This transmittance analysis, together with ellipsometric analysis, is applied to a glass substrate coated with a SiN thin film, and it is shown that the thickness and complex refractive index of the SiN thin film can be determined accurately, even though the extinction coefficient is very small.

The Structure and Dielectric Properties of the (Ba,Sr)TiO$_3$ Thin Films with the Substrate Temperature (기판온도에 따른 (Ba,Sr)TiO$_3$ 박막의 구조와 유전특성)

  • 이상철;이문기;이영희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.11
    • /
    • pp.603-608
    • /
    • 2000
  • $(Ba, Sr)TiO_{3}$[BST] thin films were fabricated on the Pt/TiO$_2$/SiO$_2$/Si substrate by the RF sputtering. The structure and dielectric properties of the BST thin films with the substrate temperature were investigated. Increasing the substrate temperature, The BST phase increased and barium multi titanate phases decreased. Increasing the frequency, the dielectric constant decreased and the dielectric loss increased. The dielectric constant and dielectric loss of the BST thin films deposited at 50$0^{\circ}C$ were 300 and 0.018, respectively at 1 kHz. The leakage current density of the BST thin films deposited at 50$0^{\circ}C$ was $10^{-9}$ A/$\textrm{cm}^2$ with applied voltage of 3V. Because of the high dielectric constant(300), low dielectric loss(0.018) and low leakage current($10^{-9}$ A/$\textrm{cm}^2$), BST thin films deposited at 50$0^{\circ}C$ is expecting for the application of DRAM.

  • PDF

The Effects of Substrate Temperature on Electrical and Physical Properties of ZnO:Al for the Application of Solar Cells (태양전지 응용을 위한 ZnO:Al 박막의 전기적·물리적 특성에서 증착 온도의 영향)

  • Park, Chan Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.39-43
    • /
    • 2021
  • In the case of ZnO:Al thin films, it is the best material that can replace ITO that is mainly used as a transparent electrode in electronic devices such as solar cells and flat-panel displays. In this study, ZnO:Al films were fabricated by using the RF dual magnetron sputtering method at various substrate temperatures. As the substrate temperature increased, the crystallinity of the ZnO:Al thin films was improved, and the electrical conductivity and electrical properties of the thin film improved owing to the increase in grain size. In addition, the surface roughness of the ZnO:Al thin films increased due to changes in the surface and density of the thin films. Moreover, the substrate temperature increased the density of thin films and improved their transmittance. To be applied to solar cells and other several electronic devices in the future, the hardness and adhesion properties of the thin film improve as the substrate temperature increases.

Study on RF power dependence of BST thin film by the different substrates (기판에 따른 BST 박막의 RF Power 의존성)

  • 최명률;이태일;박인철;김홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.22-25
    • /
    • 2002
  • In this paper, we deposited MgO buffer layer on p-type (100)Si substrate in the condition of substrate temperature 400$^{\circ}C$, working gas ratio Ar:O$_2$=80:20, RF Power 50W, working pressure 10mtorr, and the thickness of the film was about 300${\AA}$. Then we deposited Ba$\sub$0.5/Sr$\sub$0.5/TiO$_3$ thin film using RF Magnetron sputtering method on the MgO/Si substrate in various RF power of 25W, 50W, 75W. The film deposited in 50W showed the best crystalline from the XRD measurement. To know the electrical properties of the film, we manufactured Al/BSTMgO(300${\AA}$)/Si/Al structure capacitor. In the result of I-V measurement, The leakage current density of the capacitor was lower than 10$\^$-7/A/$\textrm{cm}^2$ at the range of ${\pm}$150kV/cm. From C-V characteristics of the capacitor, can calculate the dielectric constant and it was 305. Finally we deposited BST thin film on bare Si substrate and (100)MgO substrate in the same deposition condition. From the comparate of the properties of these samples, we found the properties of BST thin film which deposited on MgO/Si substrate were better than on bare Si substrate and similar to on MgO substrate.

  • PDF