Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.1.39

The Effects of Substrate Temperature on Electrical and Physical Properties of ZnO:Al for the Application of Solar Cells  

Park, Chan Il (Sungui Science Technology High School)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.1, 2021 , pp. 39-43 More about this Journal
Abstract
In the case of ZnO:Al thin films, it is the best material that can replace ITO that is mainly used as a transparent electrode in electronic devices such as solar cells and flat-panel displays. In this study, ZnO:Al films were fabricated by using the RF dual magnetron sputtering method at various substrate temperatures. As the substrate temperature increased, the crystallinity of the ZnO:Al thin films was improved, and the electrical conductivity and electrical properties of the thin film improved owing to the increase in grain size. In addition, the surface roughness of the ZnO:Al thin films increased due to changes in the surface and density of the thin films. Moreover, the substrate temperature increased the density of thin films and improved their transmittance. To be applied to solar cells and other several electronic devices in the future, the hardness and adhesion properties of the thin film improve as the substrate temperature increases.
Keywords
ZnO:Al; Dual magnetron sputtering; Resistivity; Crystallinity; Hardness; Surface roughness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. R. Forrest, MRS Bulletin, 30, 28 (2005). [DOI: https://doi.org/10.1557/mrs2005.5]   DOI
2 M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater., 18, 789 (2006). [DOI: https://doi.org/10.1002/adma.200501717]   DOI
3 R. Pacios, D.D.C. Bradley, J. Nelson, and C. J. Brabec, Synth. Met., 137, 1469 (2003). [DOI: https://doi.org/10.1016/S0379-6779(02)01182-7]   DOI
4 V. Bhosle, J. T. Prater, F. Yang, D. Burk, S. R. Forrest, and J. Narayan, J. Appl. Phys., 102, 023501 (2007). [DOI: https://doi.org/10.1063/1.2750410]   DOI
5 L.J.A. Koster, V. D. Mihailetchi, and P.W.M. Blom, Appl. Phys. Lett., 88, 093511 (2006). [DOI: https://doi.org/10.1063/1.2181635]   DOI
6 J. P. Wiff, Y. Kinemuchi, and K, Wateri, Mater. Lett., 63, 2470 (2009). [DOI: https://doi.org/10.1016/j.matlet.2009.08.036]   DOI
7 K. Y. Cheong, N. Muti, and S. R. Ramanan, Thin Solid Films, 410, 142 (2002). [DOI: https://doi.org/10.1016/s0040-6090(02)00286-9]   DOI
8 J. F. Chang and M. H. Hon, Thin Solid Films, 386, 79 (2001). [DOI: https://doi.org/10.1016/s0040-6090(00)01891-5]   DOI
9 H. S. Kim, J. Korean Vac. Soc., 18, 384 (2009). [DOI: https://doi.org/10.5757/jkvs.2009.18.5.384]   DOI
10 M. Jorgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 92, 686 (2008). [DOI: https://doi.org/10.1016/j.solmat.2008.01.005]   DOI
11 F. C. Krebs and K. Norrman, Prog. Photovoltaics, 15, 697 (2007). [DOI: https://doi.org/10.1002/pip.794]   DOI
12 V. Tvarozek, I. Novotny, P. Sutta, S. Flickyngerova, K. Schtereva, and E. Vavrinsky, Thin Solid Films, 515, 8756 (2007). [DOI: https://doi.org/10.1016/j.tsf.2007.03.125]   DOI
13 J. H. Lee, B. Hong, and Y. S. Park, Thin Solid Films, 547, 3 (2013). [DOI: https://doi.org/10.1016/j.tsf.2013.06.045]   DOI
14 S. Park, S. J. Tark, J. S. Lee, H. Lim, and D. Kim, Sol. Energy Mater. Sol. Cells, 93, 1020 (2009). [DOI: https://doi.org/10.1016/j.solmat.2008.11.033]   DOI
15 M. Shimizu, T. Horii, T. Shiosaki, and A. Kawabata, Thin Solid Films, 96, 149 (1982). [DOI: https://doi.org/10.1016/0040-6090(82)90613-7]   DOI