DOI QR코드

DOI QR Code

태양전지 응용을 위한 ZnO:Al 박막의 전기적·물리적 특성에서 증착 온도의 영향

The Effects of Substrate Temperature on Electrical and Physical Properties of ZnO:Al for the Application of Solar Cells

  • 투고 : 2020.10.17
  • 심사 : 2020.11.30
  • 발행 : 2021.01.01

초록

In the case of ZnO:Al thin films, it is the best material that can replace ITO that is mainly used as a transparent electrode in electronic devices such as solar cells and flat-panel displays. In this study, ZnO:Al films were fabricated by using the RF dual magnetron sputtering method at various substrate temperatures. As the substrate temperature increased, the crystallinity of the ZnO:Al thin films was improved, and the electrical conductivity and electrical properties of the thin film improved owing to the increase in grain size. In addition, the surface roughness of the ZnO:Al thin films increased due to changes in the surface and density of the thin films. Moreover, the substrate temperature increased the density of thin films and improved their transmittance. To be applied to solar cells and other several electronic devices in the future, the hardness and adhesion properties of the thin film improve as the substrate temperature increases.

키워드

참고문헌

  1. S. R. Forrest, MRS Bulletin, 30, 28 (2005). [DOI: https://doi.org/10.1557/mrs2005.5]
  2. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater., 18, 789 (2006). [DOI: https://doi.org/10.1002/adma.200501717]
  3. R. Pacios, D.D.C. Bradley, J. Nelson, and C. J. Brabec, Synth. Met., 137, 1469 (2003). [DOI: https://doi.org/10.1016/S0379-6779(02)01182-7]
  4. V. Bhosle, J. T. Prater, F. Yang, D. Burk, S. R. Forrest, and J. Narayan, J. Appl. Phys., 102, 023501 (2007). [DOI: https://doi.org/10.1063/1.2750410]
  5. L.J.A. Koster, V. D. Mihailetchi, and P.W.M. Blom, Appl. Phys. Lett., 88, 093511 (2006). [DOI: https://doi.org/10.1063/1.2181635]
  6. J. P. Wiff, Y. Kinemuchi, and K, Wateri, Mater. Lett., 63, 2470 (2009). [DOI: https://doi.org/10.1016/j.matlet.2009.08.036]
  7. K. Y. Cheong, N. Muti, and S. R. Ramanan, Thin Solid Films, 410, 142 (2002). [DOI: https://doi.org/10.1016/s0040-6090(02)00286-9]
  8. J. F. Chang and M. H. Hon, Thin Solid Films, 386, 79 (2001). [DOI: https://doi.org/10.1016/s0040-6090(00)01891-5]
  9. H. S. Kim, J. Korean Vac. Soc., 18, 384 (2009). [DOI: https://doi.org/10.5757/jkvs.2009.18.5.384]
  10. M. Jorgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 92, 686 (2008). [DOI: https://doi.org/10.1016/j.solmat.2008.01.005]
  11. F. C. Krebs and K. Norrman, Prog. Photovoltaics, 15, 697 (2007). [DOI: https://doi.org/10.1002/pip.794]
  12. V. Tvarozek, I. Novotny, P. Sutta, S. Flickyngerova, K. Schtereva, and E. Vavrinsky, Thin Solid Films, 515, 8756 (2007). [DOI: https://doi.org/10.1016/j.tsf.2007.03.125]
  13. J. H. Lee, B. Hong, and Y. S. Park, Thin Solid Films, 547, 3 (2013). [DOI: https://doi.org/10.1016/j.tsf.2013.06.045]
  14. S. Park, S. J. Tark, J. S. Lee, H. Lim, and D. Kim, Sol. Energy Mater. Sol. Cells, 93, 1020 (2009). [DOI: https://doi.org/10.1016/j.solmat.2008.11.033]
  15. M. Shimizu, T. Horii, T. Shiosaki, and A. Kawabata, Thin Solid Films, 96, 149 (1982). [DOI: https://doi.org/10.1016/0040-6090(82)90613-7]