• Title/Summary/Keyword: thermodynamic effect

Search Result 375, Processing Time 0.026 seconds

Role of the Salt Bridge Between Arg176 and Glu126 in the Thermal Stability of the Bacillus amyloliquefaciens ${\alpha}$-Amylase (BAA)

  • Zonouzi, Roseata;Khajeh, Khosro;Monajjemi, Majid;Ghaemi, Naser
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2013
  • In the Bacillus amyloliquefaciens ${\alpha}$-amylase (BAA), the loop (residues 176-185; region I) that is the part of the calcium-binding site (CaI, II) has two more amino acid residues than the ${\alpha}$-amylase from Bacillus licheniformis (BLA). Arg176 in this region makes an ionic interaction with Glu126 from region II (residues 118-130), but this interaction is lost in BLA owing to substitution of R176Q and E126V. The goal of the present work was to quantitatively estimate the effect of ionic interaction on the overall stability of the enzyme. To clarify the functional and structural significance of the corresponding salt bridge, Glu126 was deleted (${\Delta}$E126) and converted to Val (E126V), Asp (E126D), and Lys (E126K) by site-directed mutagenesis. Kinetic constants, thermodynamic parameters, and structural changes were examined for the wild-type and mutated forms using UV-visible, atomic absoption, and fluorescence emission spectroscopy. Wild-type exhibited higher $k_{cat}$ and $K_m$ but lower catalytic efficiency than the mutant enzymes. A decreased thermostability and an increased flexibility were also found in all of the mutant enzymes when compared with the wild-type. Additionally, the calcium content of the wild-type was more than ${\Delta}E126$. Thus, it may be suggested that ionic interaction could decrease the mobility of the discussed region, prevent the diffusion of cations, and improve the thermostability of the whole enzyme. Based on these observations, the contribution of loop destabilization may be compensated by the formation of a salt bridge that has been used as an evolutionary mechanism or structural adaptation by the mesophilic enzyme.

Theoretical Study on the Selective Reduction of Chiral [2-(diphenyl hydroxy-methyl)pyrrolidine]-AlH Derivatives and Aromatic Ketone ([2-(diphenyl hydroxy-methyl)pyrrolidine]-AlH 유도체와 방향족 케톤의 선택적 환원에 대한 이론적 연구)

  • Lee, Chul Jae;Kim, Jong-Mi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.389-394
    • /
    • 2021
  • In this work, we study the properties of molecular structure and boundary orbital functions of the DPHMP-AlH and propiophenone and butyrophenone, which are forms of alkoxy-amine-aluminum derivatives. Furthermore, we investigate the effect on the selective reduction of the final products (R), (S)-phenylpropanol and (R), (S)-phenylbutanol by calculating the stereoscopic and thermodynamic parameters of the transition state. Considering the three-dimensional molecular structural stability, the transition status of (S) types DPHMP-AlH and alkylphenone was found to be more stable, resulting in the selective reductions of DPHM-AlH and alkylphenone from this result: (S)-(1)-phenylpropanol and (S)-(1)-phenylbutanol was confirmed that the formation was advantageous.

Study of Al Doping Effect on HfO2 Dielectric Thin Film Using PEALD (PEALD를 이용한 HfO2 유전박막의 Al 도핑 효과 연구)

  • Min Jung Oh;Ji Na Song;Seul Gi Kang;Bo Joong Kim;Chang-Bun Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.125-128
    • /
    • 2023
  • Recently, as the process of the MOS device becomes more detailed, and the degree of integration thereof increases, many problems such as leakage current due to an increase in electron tunneling due to the thickness of SiO2 used as a gate oxide have occurred. In order to overcome the limitation of SiO2, many studies have been conducted on HfO2 that has a thermodynamic stability with silicon during processing, has a higher dielectric constant than SiO2, and has an appropriate band gap. In this study, HfO2, which is attracting attention in various fields, was doped with Al and the change in properties according to its concentration was studied. Al-doped HfO2 thin film was deposited using Plasma Enhanced Atomic Layer Deposition (PEALD), and the structural and electrical characteristics of the fabricated MIM device were evaluated. The results of this study are expected to make an essential cornerstone in the future field of next-generation semiconductor device materials.

Desulfurization Reaction according to Ladle Slag Recycling Method in Shaft-Type EAF Operation (Shaft형 전기로 공정에서 ladle 슬래그 재활용 방법에 따른 탈황반응)

  • Jung-Min Yoo
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.46-53
    • /
    • 2024
  • The residual heat and high CaO content present in the slag remaining in the ladle after the completion of continuous casting in the electric arc furnace (EAF) steelmaking process have been utilized to reduce power consumption and lime usage in the ladle furnace (LF) process. However, if the timing of such processes does not align with the LF and continuous casting operations, the recycling rate will decrease. To increase the slag recycling rate, the effect of ladle slag recycling methods, specifically pouring ladle slag into the slag pot in advance for subsequent recycling, on LF operations was analyzed. The slag liquefaction rate was calculated using the thermodynamic program Factsage 8.3 for ladle molten slag recycling methods. By applying each of the 10 heats operations for the ladle slag recycling methods, the desulfurization ability and LF operation performance were compared. It was found that when slag was immediately recycled into the ladle after continuous casting was completed, power consumption decreased by 0.3 MWh, LF operation time was shortened by 1.2 minutes, and the desulfurization rate increased by 5.8%.

Numerical Investigation of Exhaust Gas Recirculation Effect under Boost Pressure Condition on Homogeneous Charge Compression Autoignition (HCCI엔진의 과급조건에서 EGR영향에 대한 수치해석적 연구)

  • Oh, Chung Hwan;Jamsran, Narankhuu;Lim, Ock Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.451-464
    • /
    • 2014
  • This study used numerical methods to investigates investigate the exhaust gas recirculation (EGR) effect under the condition of boost pressure condition on a homogeneous charge compression ignition (HCCI) combustion engine using numerical methods. The detailed chemical-kinetic mechanisms and thermodynamic parameters for n-heptane, iso-octane, and PRF50 from the Lawrence Livermore National Laboratory (LLNL) are were used for this study. The combustion phase affects the efficiency and power. To exclude these effects, this study decided to maintain a 50 burn point (CA50) at 5 CA after top dead center aTDC. The results showed that the EGR increased, but the low temperature heat release (LTHR), negative temperature coefficient (NTC), and high temperature heat release (HTHR) were weakened due by theto effect of the O2 reduction. The combined EGR and boost pressure enhanced the autoignition reactivity, Hhence, the LTHR, NTC, and HTHR were enhanced, and the heat-release rate was increased. also In addition, EGR decraeased the indicated mean effective pressure (IMEP), but the combined EGR and boost pressure increased the IMEP. As a results, combining the ed EGR and boost pressure was effective to at increase increasing the IMEP and maintaining the a low PRR.

Kinetics and Hydrolysis Mechanism of Herbicidal N-(2,6-dimethoxypyrimidin-2-yl)aminocarbonyl-2-(1-hyd roxy-2-fluoroethyl)benzenesulfonamide Derivatives (제초성, N-(2,6-dimethoxypyrimidin-2-yl)aminocarbonyl-2-치환(Z)-6-(1-hyd roxy-2-fluoroethyl)benzenesulfonamide 유도체의 가수분해 반응 메카니즘)

  • Lee, Chan-Bog;Ryu, Jae-Wook;Kim, Dae-Whang;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.38 no.5
    • /
    • pp.455-462
    • /
    • 1995
  • The new six herbicidal N-[(pyrimidin-2-yl)aminocarbonyl]-2-substituted-6-(1-hydroxy-2-fluoroethyl)benzenesulfonamide derivatives(S) were synthesized and rate constants for the hydrolysis of thier in the range of pH $1.0{\sim}10.0$ have been studied in 15%(v/v) aqueous acetonitrile solution at $45^{\circ}C$. From the basis of the results, pH-effect, solvent effect, ortho-substituent effect, thermodynamic parameters(${\Delta}H^{\neq}$ & ${\Delta}S^{\neq}$), pKa constant(4.80), rate equation, analysis of hydrolysis products(2-(1-hydroxy-2-fluoroethyl)benzenesulfonamide & 4,6-dimethoxyaminopyrimidine), it may be concluded that the general acid catalyzed hydrolysis through $A-S_E2$ mechanism and specific acid catalyzed hydrolysis through A-2 type(or $A_{AC}2$) mechanism proceeds via conjugate acid($SH^+$) and tetrahedral intermediate(I) below pH 8.0, whereas, above pH 9.0, the general base catalyzed hydrolysis by water molecules(B) through $(E_1)_{anion}$ mechanism proceeds via conjugate base(CB). In the range between $pH\;7.0{\sim}pH\;9.0$, these two reactions occur competitively.

  • PDF

The Effect of pH on Citric Acid Leaching of Soil Contaminated with Heavy Metals (중금속(重金屬) 오염토양(汚染土壤)의 구산(枸酸) 침출(浸出)에 대한 pH의 영향(影響))

  • Jung, Kyungbae;Park, Hongki;Yoo, Kyoungkeun;Park, Jay Hyun;Choi, Ui Kyu
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.13-19
    • /
    • 2013
  • The effect of pH on the citrate leaching behavior of heavy metal ion was investigated to develop an eco-friendly process for removing heavy metals from soil contaminated with copper, zinc, and lead. The leaching tests were performed using citrate solution with pH adjusted by mixing citric acid and sodium citrate under the following leaching conditions: particle size, under $75{\mu}m$; temperature, $50^{\circ}C$; citrate concentration, $1kmol/m^3$; pulp density, 5%; shaking speed, 100 rpm; leaching time, 1 hour. The difference of pH before and after the leaching test was not observed, and this result indicates the direct effect of hydrogen ion concentration on the leaching of metals was insignificant. The removal ratios of copper, zinc, and lead from the contaminated soil decreased with increasing pH. The thermodynamic calculation suggests that the leaching behaviors of metal ions were determined by two reactions; one is the reaction to form complex ions between heavy metal ions and citrate ion species, and the other is the reaction to form metal hydroxide between heavy metal ions and hydroxide ion.

Miscibility and Properties of Ethyl-Branched Polyethylene/Ethylene-Propylene Rubber Blends (II) (에틸 가지화된 폴리에틸렌과 에틸렌-프로필렌 고무 블렌드의 혼화성과 물성(II))

  • Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.37 no.2
    • /
    • pp.79-85
    • /
    • 2002
  • Ethyl-branched polyethylene [PE(2)] containing 2mole% ethyl branch and three ethylene-propylene rubbers (EPR's) having the same ethylene(E)-propylene(P) molar ratio(E/P=50/50) with different stereoregularity, that is, random EPR (r-EPR), alternating-EPR (alt-EPR) and isotactic-alternating-EPR (iso-alt-EPR) were mixed for the investigation or their properties depending on the stereoregularity. Crystallinity of the prepared blends decreased with increasing content of amorphous EPR because of a decrease in both the degree of annealing and kinetics of diffusion of the crystallizable polymer content. With blend composition, crystallinity was reduced with the stereoregularity in EPR. The thermodynamic interaction parameter(x) for the three blend systems approximately equals to zero near the melting point. These systems were determined to be miscible on a molecular scale near or above the crystalline melting point or the crystalline PE(2). From the measurement of $T_m$ vs. $T_c$, the behavior of PE(2) is mainly due to a diluent effect of EPR component. The spherulite size measured by small angle light scattering (SALS) technique depended upon blend composition, and stereoregularity of EPR. The size of spherulite was enlarged with the content of rubbery EPR and the decrease of stereoregularity in EPR.

Kinetics and Mechanism of Hydrolysis of Insecticidal Imidacloprid (살충성 Imidacloprid의 가수분해 반응 메카니즘)

  • Yu, Sung-Jae;Kang, Moon-Sung;Sung, Nack-Doo
    • Applied Biological Chemistry
    • /
    • v.40 no.1
    • /
    • pp.53-57
    • /
    • 1997
  • The rate of hydrolysis of insecticidal 1-(6-chloro-3-pyridylmethyl) -2-nitro-iminoimidazolidine (common name; imidacloprid) have been investigated in 15%(v/v) aqueous dioxane at $45^{\circ}C$. From the kinetics and non-kinetics data such as pH-effect, solvent effect(m=0.04, n=0.30 IT m<${\Delta}H^{\neq}=16.14kcal{\cdot}mol^{-1}\;&\;{\Delta}S^{\neq}=-0.03e.u.$), rate equation ($k_{obs.}=4.56{\times}10^{-3}[OH^-]$) and analysis of hydrolysis product, 1-(6-chloro-3-pyridylmethyl-2)-imidazolidinon, the hydrolysis mechanism of imidacloprid is proposed that the specific base catalyzed hydrolysis($K_{OH^-}$) through nucleophilic addition-elimination ($Ad_N-E$) mechanism proceed via intermediate, 1-(6-chloro-3- pyridylmethyl)-2-hydroxy-2-imidazolidinylisonitraminate (I) and ${\beta}$-3-(6-chloro-3-pyridylmethyl)aminoethyl-1-nitrourea(III). And the half-life(t1/2) of hydrolytic degradation at pH 8.0 and $45^{\circ}C$ was about 4.5 months.

  • PDF

Self-Assembled Nanoparticles of Bile Acid-Modified Glycol Chitosans and Their Applications for Cancer Therapy

  • Kim Kwangmeyung;Kim Jong-Ho;Kim Sungwon;Chung Hesson;Choi Kuiwon;Kwon Ick Chan;Park Jae Hyung;Kim Yoo-Shin;Park Rang-Won;Kim In-San;Jeong Seo Young
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.167-175
    • /
    • 2005
  • This review explores recent works involving the use of the self-assembled nanoparticles of bile acid-modified glycol chitosans (BGCs) as a new drug carrier for cancer therapy. BGC nanoparticles were produced by chemically grafting different bile acids through the use of l-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). The precise control of the size, structure, and hydrophobicity of the various BGC nanoparticles could be achieved by grafting different amounts of bile acids. The BGC nanoparticles so produced formed nanoparticles ranging in size from 210 to 850 nm in phosphate-buffered saline (PBS, pH=7.4), which exhibited substantially lower critical aggregation concentrations (0.038-0.260 mg/mL) than those of other low-molecular-weight surfactants, indicating that they possess high thermodynamic stability. The SOC nanoparticles could encapsulate small molecular peptides and hydrophobic anticancer drugs with a high loading efficiency and release them in a sustained manner. This review also highlights the biodistribution of the BGC nanoparticles, in order to demonstrate their accumulation in the tumor tissue, by utilizing the enhanced permeability and retention (EPR) effect. The different approaches used to optimize the delivery of drugs to treat cancer are also described in the last section.