Browse > Article

Self-Assembled Nanoparticles of Bile Acid-Modified Glycol Chitosans and Their Applications for Cancer Therapy  

Kim Kwangmeyung (Biomedical Research Center, Korea Institute of Science and Technology, KIST Regional Laboratory in Advanced Medical Technology Cluster for Diagnosis & Prediction)
Kim Jong-Ho (Biomedical Research Center, Korea Institute of Science and Technology, KIST Regional Laboratory in Advanced Medical Technology Cluster for Diagnosis & Prediction)
Kim Sungwon (Biomedical Research Center, Korea Institute of Science and Technology)
Chung Hesson (Biomedical Research Center, Korea Institute of Science and Technology)
Choi Kuiwon (Biomedical Research Center, Korea Institute of Science and Technology)
Kwon Ick Chan (Biomedical Research Center, Korea Institute of Science and Technology, KIST Regional Laboratory in Advanced Medical Technology Cluster for Diagnosis & Prediction)
Park Jae Hyung (Department of Advanced Polymer and Fiber Materials, College of Environment and Applied Chemistry, Kyung Hee University)
Kim Yoo-Shin (Department of Biochemistry, School of Medicine, Kyungpook National University, Advanced Medical Technology Cluster for Diagnosis & Prediction)
Park Rang-Won (Department of Biochemistry, School of Medicine, Kyungpook National University, Advanced Medical Technology Cluster for Diagnosis & Prediction)
Kim In-San (Department of Biochemistry, School of Medicine, Kyungpook National University, Advanced Medical Technology Cluster for Diagnosis & Prediction)
Jeong Seo Young (Department of Pharmaceutics, College of Pharmacy, Kyung Hee University)
Publication Information
Macromolecular Research / v.13, no.3, 2005 , pp. 167-175 More about this Journal
Abstract
This review explores recent works involving the use of the self-assembled nanoparticles of bile acid-modified glycol chitosans (BGCs) as a new drug carrier for cancer therapy. BGC nanoparticles were produced by chemically grafting different bile acids through the use of l-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). The precise control of the size, structure, and hydrophobicity of the various BGC nanoparticles could be achieved by grafting different amounts of bile acids. The BGC nanoparticles so produced formed nanoparticles ranging in size from 210 to 850 nm in phosphate-buffered saline (PBS, pH=7.4), which exhibited substantially lower critical aggregation concentrations (0.038-0.260 mg/mL) than those of other low-molecular-weight surfactants, indicating that they possess high thermodynamic stability. The SOC nanoparticles could encapsulate small molecular peptides and hydrophobic anticancer drugs with a high loading efficiency and release them in a sustained manner. This review also highlights the biodistribution of the BGC nanoparticles, in order to demonstrate their accumulation in the tumor tissue, by utilizing the enhanced permeability and retention (EPR) effect. The different approaches used to optimize the delivery of drugs to treat cancer are also described in the last section.
Keywords
glycol chitosan; nanoparticle; EPR effect; cancer therapy;
Citations & Related Records

Times Cited By Web Of Science : 17  (Related Records In Web of Science)
Times Cited By SCOPUS : 16
연도 인용수 순위
1 G. S. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka, Pharm. Res., 12, 192 (1995)   DOI   ScienceOn
2 H. Hashizume, P. Baluk, S. Morikawa, J. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald, Am. J. Pathol., 156, 1363, (2000)   DOI   ScienceOn
3 Q. Li, E. T. Lunn, E. W. Grandmaison, and M. F. A. Goosen, in Applications of Chitin and Chitosan, M. F. A. Goosen, Ed., Technomic Publishing Co., Inc., Lancaster, 1997, p. 3
4 Y. Zhang and M. Zhang, J. Biomed. Mater. Res., 62, 378, (2002)   DOI   ScienceOn
5 K. Y. Lee, W. H. Jo, I. C. Kwon, Y. Kim, and S. Y. Jeong, Macromolecules, 31, 378 (1998)   DOI   ScienceOn
6 Y. J. Son, J. S. Jang, Y. W. Cho, H. Chung, R.W. Park, I. C. Kwon, I. Kim, J. Y. Park, S. B. Seo, C. R. Park, and S. Y. Jeong, J. Control. Release, 91, 135 (2003)   DOI
7 J. H. Park, S. Kwon, J. Nam, R. Park, H. Chung, S. B. Seo, I. Kim, and I. C. Kwon, J. Control. Release, 95, 579 (2004)   DOI
8 G. D. Grossfeld, R. R. Carrol, and N. Lindeman, Urology, 59, 97 (2002)   DOI   ScienceOn
9 S. K. Hobbs, W. L. Monsky, F. Yuan, W. G. Roberts, L. Driffith, V. P. Torchilin, and R. K. Jain, Med. Sci., 95, 4607 (1998)
10 M. A. Burg, R. Pasqualini, W. Arap, E. Rouslahti, and W. B. Stallcup, Cancer Res., 59, 2869 (1999)
11 P. C. Brooks, R. A. Clark, and D. A. Cheresh, Science, 264, 569 (1994)   DOI   PUBMED
12 V. Omelyaneko, P. Kopeckova, C. Gentry, and J. Kopeck, J. Control. Release, 53, 25 (1998)   DOI
13 Z. Zhu, J. Kralovec, T. Ghose, and M. Mammen, Cancer Immunol. Immunother., 40, 257 (1995)
14 K. Akiyoshi, S. Deguchi, N. Moriguchi, S. Yamaguchi, and J. Sunamoto, Macromolecules, 26, 3062 (1993)   DOI   ScienceOn
15 K. Kataoka, A. Harada, and Y. Nagasaki, Adv. Drug. Deliv. Rev., 47, 113 (2001)   DOI   PUBMED   ScienceOn
16 Y. Matsumura and H. Maeda, Cancer Res., 46, 6387, (1986)
17 M. Yalpani and L. D. Hall, Macromolecules, 17, 272 (1984)   DOI
18 K. Akiyoshi and J. Sunamoto, Surfactants Sci. Ser., 44, 289 (1992)
19 H. Hashizume, P. Baluk, S. Morikawa, J. McLean, G. Thurston, S. Roberge, R.K. Jain, and D.M. McDonald, Am. J. Pathol., 156, 1363 (2000)   DOI   ScienceOn
20 M. Yokoyama, S. Inoue, K. Kataoka, N. Yui, T. Okano, and Y. Sakurai, Macromol. Chem., 190, 2041, (1989)   DOI
21 A. Enhsen, W. Kramer, and Wess, Drug Discov. Today, 3, 409 (1998)   DOI   ScienceOn
22 E. Ruoslahti, Nat. Rev. Cancer, 2, 83 (2002)   DOI   ScienceOn
23 E. Ruel-Gariepy, G. Leclair, P. Hildgen, A. Gupta, and J. C. Leroux, J. Control. Release, 82, 373 (2002)   DOI
24 P. C. Brooks, A. M. Montgomery, M. Rosenfeld, R. A. Reisfeld, T. Hu, G. Klier, and D. A. Cheresh, Cell, 79, 1157 (1994)
25 T. H. Kim, I. K. Park, J. W. Nah, Y. J. Choi, and C. S. Cho, Biomaterials, 25, 3783 (2004)   DOI   ScienceOn
26 R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer, Science, 263, 1600 (1994)   DOI
27 K. Y. Lee, I. C. Kwon, Y. H. Kim, W. H. Jo, and S. Y. Jeong,, J. Control. Release, 51, 213 (1998)   DOI
28 M. Wilhelm, C. Zhao, Y. Wang, R. Xu, M. A. Winnik, J. Mura, G. Riess, and M. D. Croucher, Macromolecules, 24, 1033 (1991)   DOI
29 H. P. Hammes, M. Brwonlee, A. Jonczyk, A. Sutter, and K. T. Preissner, Nat. Med., 2, 529 (1996)   DOI   ScienceOn
30 J. O. Nam, J. E. Kim, H. W. Jeong, J. O. Nam, B. H. Lee, J. Y. Choi, R. W. Park, J. Y. Park, and I. S. Kim, J. Bio. Chem., 278, 25902 (2003)   DOI   ScienceOn
31 M. Dvorak, P. Kopeckova, and J. Kopeck, J. Control. Release, 60, 321 (1999)   DOI   ScienceOn
32 H. S. Yoo and T. G. Park, J. Control. Release, 70, 63 (2001)   DOI   ScienceOn
33 B. P. Eliceiri and D. A. Cheresh, J. Clin. Invest., 103, 1227 (1999)   DOI   ScienceOn
34 Y. Matsumura and H. Maeda, Cancer Res., 46, 6387, (1986)
35 K. M. Huh, S. C. Lee, S. W. Kang, I. C. Kwon, Y. Kim, and S. Y. Jeong, Langmuir, 16, 10566 (2000)   DOI   ScienceOn
36 K. Park and R. J. Mrsny, ACS Symposium Series, American Chemical Society, Washington, DC, 2000, vol. 752, pp 2-12
37 M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue, Cancer Res., 50, 1693, (1990)
38 M. Friedlander, P. C. Brooks, R. W. Shaffer, C. M. Kincaid, J. A. Varner, and D. A. Cheresh, Science, 270, 1500 (1995)   DOI
39 C. Qin, Y. Du, L. Xiao, Z. Li, and X. Gao, Int. J. Bio. Macromol., 69, 97 (2002)
40 H. N. Lode, T. Moehler, R. Xiang, A. Jonczyk, S. D. Gillies, D. A. Cheresh, and R. A. Reisfeld, Proc. Natl. Acad. Sci. U. S. A., 96, 1591 (1999)
41 K. Kim, S. Kwon, J. H. Park, H. Chung, S. Y. Jeong, and I. C. Kwon, Biomacromolecules, 6, 1154 (2005)   DOI   ScienceOn
42 S. Kwon, J. H. Park, H. Chung, I. C. Kwon, S. Y. Jeong, and I. Kim, Langmuir, 19, 10 188 (2003)
43 A. Erdreich-Epstein, H. Shimada, S. Groshen, M. Liu, L. S. Metelitsa, K. S. Kim, M. F. Stins, R. C. Seeger, and D. L. Durden, Cancer Res., 60, 712 (2000)
44 M. Sugimoto, M. Morimoto, H. Sashiwa, H. Saimoto, and Y. Shigemasa, Carbohydr. Polym., 36, 49 (1998)   DOI   ScienceOn
45 Y. Nagasaki, K. Yasugi, Y. Yamamoto, A. Harada, and K. Kataoka, Biomacromolecules, 2, 1067 (2001)   DOI   ScienceOn
46 X. G. Chen, C. M. Lee, and H. J. Park, J. Agric. Food Chem., 51, 3135 (2003)   DOI   ScienceOn
47 P. Carmeliet and R. K. Jain, Nature, 407, 249 (2000)   DOI   ScienceOn
48 G. S. Kwon and T. Okano, Adv. Drg Deliv. Rev., 21, 107 (1996)   DOI   ScienceOn
49 S. Barnes, and D. N. Kirk, in The Bile Acids, chemistry, Physiology, and Metabolism, K. K. R. Setchell, D. Kritchevsky, and P. P. Nair, Eds., Plenum Press, New York, 1988, vol. 4, p. 68
50 I. F. Uchegbu, L. Sadiq, M. Arastoo, A. I. Gray, W. Wang, R. D. Waigh, and A. G. Schatzleina, Int. J. Pharm., 224, 185 (2001)   DOI   ScienceOn
51 H. S. Yoo and T. G. Park, Polymer Preparation, 41, 992 (2000)
52 Y. H. Kim, S. H. Gihm, C. R. Park, K. Y. Lee, T. W. Kim, I. C. Kwon, H. Chung, and S. Y. Jeong, Bioconjugate Chem., 12, 932 (2001)   DOI   ScienceOn