Browse > Article
http://dx.doi.org/10.4014/jmb.1205.05062

Role of the Salt Bridge Between Arg176 and Glu126 in the Thermal Stability of the Bacillus amyloliquefaciens ${\alpha}$-Amylase (BAA)  

Zonouzi, Roseata (Department of Biology, Science and Research Branch, Islamic Azad University)
Khajeh, Khosro (Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University)
Monajjemi, Majid (Department of Chemistry, Science and Research Branch, Islamic Azad University)
Ghaemi, Naser (Department of Biotechnology, University College of Science, University of Tehran)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.1, 2013 , pp. 7-14 More about this Journal
Abstract
In the Bacillus amyloliquefaciens ${\alpha}$-amylase (BAA), the loop (residues 176-185; region I) that is the part of the calcium-binding site (CaI, II) has two more amino acid residues than the ${\alpha}$-amylase from Bacillus licheniformis (BLA). Arg176 in this region makes an ionic interaction with Glu126 from region II (residues 118-130), but this interaction is lost in BLA owing to substitution of R176Q and E126V. The goal of the present work was to quantitatively estimate the effect of ionic interaction on the overall stability of the enzyme. To clarify the functional and structural significance of the corresponding salt bridge, Glu126 was deleted (${\Delta}$E126) and converted to Val (E126V), Asp (E126D), and Lys (E126K) by site-directed mutagenesis. Kinetic constants, thermodynamic parameters, and structural changes were examined for the wild-type and mutated forms using UV-visible, atomic absoption, and fluorescence emission spectroscopy. Wild-type exhibited higher $k_{cat}$ and $K_m$ but lower catalytic efficiency than the mutant enzymes. A decreased thermostability and an increased flexibility were also found in all of the mutant enzymes when compared with the wild-type. Additionally, the calcium content of the wild-type was more than ${\Delta}E126$. Thus, it may be suggested that ionic interaction could decrease the mobility of the discussed region, prevent the diffusion of cations, and improve the thermostability of the whole enzyme. Based on these observations, the contribution of loop destabilization may be compensated by the formation of a salt bridge that has been used as an evolutionary mechanism or structural adaptation by the mesophilic enzyme.
Keywords
Bacillus amyloliquefaciens ${\alpha}$-amylase; ionic interaction; site-directed mutagenesis; thermal stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chung, C. Y., S. L. Niemela, and R. H. Miller. 1989. One-step preparation of competent Escherichia coli : Transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. USA 86: 2172-2175.   DOI   ScienceOn
2 Alikhajeh, J., K. Khajeh, B. Ranjbar, H. Naderi-Manesh, Y. H. Lin, E. Liu, et al. 2010. The crystal structure of Bacillus amyloliquefaciens $\alpha$-amylase at high resolution: Implications for thermal stability. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 66: 121-129.   DOI   ScienceOn
3 Bernfeld, P. 1955. Amylase, $\alpha$and $\beta$. Methods Enzymol. 1: 149-151.   DOI
4 Boel, E., L. Brady, A. M. Brzozowski, Z. Derewenda, G. G. Dodson, V. J. Jensen, et al. 1990. Calcium-binding in $\alpha$- amylases: An X-ray diffraction study at 2.1 A resolution of two enzymes from Aspergillus. Biochemistry 29: 6244-6249.   DOI   ScienceOn
5 Brzozowski, A. M., D. M. Lawson, J. P. Turkenburg, H. Bisgaard-Frantzen, A. Svendsen, T. V. Borchert, et al. 2000. Structural analysis of a chimeric bacterial $\alpha$-amylase: Highresolution analysis of native and ligand complexes. Biochemistry 39: 9099-9107.   DOI   ScienceOn
6 Chen, X. and C. R. Matthews. 1994. Thermodynamic properties of the transition state for the rate-limiting step in the folding of the $\alpha$-subunit of tryptophan synthase. Biochemistry 33: 6356-6362.   DOI
7 D'Amico, S., J. C. Marx, C. Gerdy, and G. Feller. 2003. Activity stability relationships in extremophilic enzymes. J. Biol. Chem. 278: 7891-7896.   DOI   ScienceOn
8 Daniel, R. M. 1996. The upper limits of enzyme thermal stability. Enzyme. Microb. Technol. 19: 74-79.   DOI   ScienceOn
9 Declerck, N., M. Machius, G. Wiegand, R. Huber, and C. Gaillardin. 2000. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. J. Mol. Biol. 301: 1041-1057.   DOI   ScienceOn
10 Eftink, M. R. and C. A. Ghiron. 1976. Exposure of tryptophanyl residues and protein dynamics. Biochemistry 16: 5546-5551.
11 Fersht, A. 1999. Structure and Mechanism in Protein Science. W. H. Freeman and Co., New York.
12 Haghani, K., Kh. Khajeh, H. Naderi-Manesh, and B. Ranjbar. 2012. Evidence regarding the hypothesis that the histidinehistidine contact pairs may affect protein stability. Int. J. Biol. Macromol. 50: 1040-1047.   DOI   ScienceOn
13 Fisher, C. L. and G. K. Pei. 1997. Modification of a PCR-based site-directed mutagenesis method. BioTechniques 23: 570-574.
14 Fitter, J., R. Herrmann, N. A. Dencher, A. Blume, and T. Hauss. 2001. Activity and stability of a thermostable $\alpha$-amylase compared to its mesophilic homologue: Mechanism of thermal adaptation. Biochemistry 40: 10723-10731.   DOI   ScienceOn
15 Gouda, M. D., S. A. Singh, A. G. A. Rao, M. S. Thakur, and N. G. Karanth. 2003. Thermal inactivation of glucose oxidase. J. Biol. Chem. 278: 24324-24333.   DOI   ScienceOn
16 Igarashi, K., H. Hagihara, and S. Ito. 2003. Protein engineering of detergent $\alpha$-amylases. Trends Glycosci. Glycotechnol. 82: 101-114.
17 Khajeh, Kh., M. M. Shokri, S. M. Asghari, F. Moradian, A. Ghasemi, M. Sadeghi, et al. 2006. Acidic and proteolytic digestion of $\alpha$-amylases from Bacillus licheniformis and Bacillus amyloliquefaciens: Stability and flexibility analysis. Enzyme Microb. Technol. 38: 422-428.   DOI   ScienceOn
18 Kuroki, R., S. Kawakita, H. Nakamura, and K. Yutani. 1992. Entropic stabilization of a mutant human lysozyme induced by calcium-binding. Proc. Natl. Acad. Sci.USA 89: 6803-6807.   DOI   ScienceOn
19 Matsuura, Y., M. Kusunoki, W. Harada, and M. Kakudo. 1984. Structure and possible catalytic residues of Taka-amylase A. J. Biochem. (Tokyo) 95: 699-702.
20 Lam, S. Y., R. C. Y. Yeung, T. Yu, K. Sze, and K. Wong. 2011. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity. PLoS Biol. 9: e1001027.   DOI   ScienceOn
21 Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265-275.
22 Machius, M., G. Wiegand, and R. Huber. 1995. Crystal structure of calcium depleted Bacillus licheniformis $\alpha$-amylase at 2.2 Å resolution. J. Mol. Biol. 246: 545-559.   DOI   ScienceOn
23 Machius, M., N. Declerck, R. Huber, and G. Wiegand. 1998. Activation of Bacillus licheniformis alpha-amylase through a disorder$\rightarrow$order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 6: 281-292.   DOI   ScienceOn
24 Nielsen, J. E. and T. V. Borchert. 2000. Protein engineering of bacterial $\alpha$-amylases. Biochim. Biophys. Acta. 1543: 253-274.   DOI   ScienceOn
25 Protasevich, I., B. Ranjbar, V. Lobachov, A. Makarov, R. Gilli, C. Briand, et al. 1997. Conformation and thermal denaturation of apocalmodulin: Role of electrostatic mutations. Biochemistry 36: 2017-2024.   DOI   ScienceOn
26 Saboury, A. A. and F. Karbassi. 2000. Thermodynamic studies on the interaction of calcium ions with alpha-amylase. Thermochim. Acta. 362: 121-129.   DOI   ScienceOn
27 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
28 Schippers, P. H. and H. P. J. M. Dekkers. 1981. Direct determination of absolute circular dichroism data and calibration of commercial instrument. Anal. Chem. 53: 778-788.   DOI
29 Shirai, T., K. Igarashi, T. Ozawa, H. Hagihara, T. Kobayashi, K. Ozaki, and S. Ito. 2007. Ancestral sequence evolutionary trace and crystal structure analyses of alkaline $\alpha$-amylase from Bacillus sp. KSM-1378 to clarify the alkaline adaptation process of proteins. Proteins 66: 600-610.
30 Suvd, D., Z. Fujimoto, K. Takase, M. Matsumura, and H. Mizuno. 2001. Crystal structure of Bacillus stearothermophilus alpha-amylase: Possible factors determining the thermostability. J. Biochem. 129: 461-468.   DOI   ScienceOn
31 Stein, R. A. and J. V. Staros. 1996. Thermal inactivation of the protein tyrosine kinase of the epidermal growth factor receptor. Biochemistry 35: 2878-2884.   DOI   ScienceOn
32 Stryer, L. 1968. Fluorescence spectroscopy of proteins. Science 162: 526-540.   DOI
33 Suzuki, Y., N. Ito, T. Yuuki, H. Yamagata, and S. Udaka. 1989. Amino acid residues stabilizing a Bacillus alpha-amylase against irreversible thermoinactivation. J. Biol. Chem. 264: 18933- 18938.
34 Takakuwa, T., T. Konno, and H. A. Meguro. 1985. New standard substance for calibration of circular dichroism: Ammonium d-10-camphorsulfonate. Anal. Sci. 1: 215-225.   DOI
35 Takkinen, K., R. F. Pettersson, N. Kalkkinen, I. Palva, H. Soderlund, and L. Kaariainen. 1983. Amino acid sequence of alpha-amylase from Bacillus amyloliquefaciens deduced from the nucleotide sequence of the cloned gene. J. Biol. Chem. 258: 1007-1013.
36 Tanaka, A. and E. Hoshino. 2002. Calcium-binding parameter of Bacillus amyloliquefaciens $\alpha$-amylase determined by inactivation kinetics. Biochem. J. 364: 635-639.   DOI   ScienceOn
37 Thompson, M. J. and D. Eisenberg. 1999. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J. Mol. Biol. 290: 595-604.   DOI   ScienceOn
38 Vieille, C. and J. G. Zeikus. 1996. Thermozymes: Identifying molecular determinants of protein structural and functional stability. Trends Biotechnol. 14: 183-190.   DOI   ScienceOn
39 Vallee, B. L., E. A. Stein, W. N. Sumerwell, and E. H. Fischer. 1959. Metal content of $\alpha$-amylases of various origins. J. Biol. Chem. 234: 2901-2905.
40 Tomazic, S. J. and A. M. Klibanov. 1988. Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases. J. Biol. Chem. 263: 3086-3091.
41 Varley, P. G. and R. H. Pain. 1991. Relation between stability, dynamics and enzyme activity in 3-phosphoglycerate kinases from yeast and Thermus thermophilus. J. Mol. Biol. 220: 531-538   DOI
42 Yuuki, T., T. Nomura, H. Tezuka, A. Tsuboi, H. Yamagata, N. Tsukagoshi, and S. Udaka. 1985. Complete nucleotide sequence of a gene coding for heat- and pH-stable alpha-amylase of Bacillus licheniformis: Comparison of the amino acid sequences of three bacterial liquefying alpha-amylases deduced from the DNA sequences. J. Biochem. 98: 1147-1156.