DOI QR코드

DOI QR Code

Study of Al Doping Effect on HfO2 Dielectric Thin Film Using PEALD

PEALD를 이용한 HfO2 유전박막의 Al 도핑 효과 연구

  • Min Jung Oh (Department of Advanced Materials Engineering, Tech University of Korea) ;
  • Ji Na Song (Department of Advanced Materials Engineering, Tech University of Korea) ;
  • Seul Gi Kang (Department of Advanced Materials Engineering, Tech University of Korea) ;
  • Bo Joong Kim (Department of Advanced Materials Engineering, Tech University of Korea) ;
  • Chang-Bun Yoon (Department of Advanced Materials Engineering, Tech University of Korea)
  • 오민정 (한국공학대학교 신소재공학과) ;
  • 송지나 (한국공학대학교 신소재공학과) ;
  • 강슬기 (한국공학대학교 신소재공학과) ;
  • 김보중 (한국공학대학교 신소재공학과) ;
  • 윤창번 (한국공학대학교 신소재공학과)
  • Received : 2023.01.09
  • Accepted : 2023.01.31
  • Published : 2023.03.01

Abstract

Recently, as the process of the MOS device becomes more detailed, and the degree of integration thereof increases, many problems such as leakage current due to an increase in electron tunneling due to the thickness of SiO2 used as a gate oxide have occurred. In order to overcome the limitation of SiO2, many studies have been conducted on HfO2 that has a thermodynamic stability with silicon during processing, has a higher dielectric constant than SiO2, and has an appropriate band gap. In this study, HfO2, which is attracting attention in various fields, was doped with Al and the change in properties according to its concentration was studied. Al-doped HfO2 thin film was deposited using Plasma Enhanced Atomic Layer Deposition (PEALD), and the structural and electrical characteristics of the fabricated MIM device were evaluated. The results of this study are expected to make an essential cornerstone in the future field of next-generation semiconductor device materials.

Keywords

Acknowledgement

This work was supported by the GRRC program of the Gyeonggi Province [GRRC TUKorea2020-A01, Multi-Material Machining Innovative Technology Research Center].

References

  1. M. Ono, M. Saito, T. Yoshitomi, C. Fiegna, T. Ohguro, H. S. Momose, and H. Iwai, J. Vac. Sci. Technol., B, 13, 1740 (1995). [DOI: https://doi.org/10.1116/1.587886]
  2. Y. H. Kim and J. C. Lee, Microelectron. Reliab., 44, 183 (2004). [DOI: https://doi.org/10.1016/j.microrel.2003.10.008]
  3. S. W. Kim, S. K. Lee, Y. D. Kim, and S. Kim, Appl. Phys. Lett., 96, 262904 (2010). [DOI: https://doi.org/10.1063/1.3456731]
  4. S. J. Ding, H. Hu, C. Zhu, M. F. Li, S. J. Kim, B. J. Cho, D.S.H. Chan, M. B. Yu, A. Y. Du, A. Chin, and D. L. Kwong, IEEE Electron Device Lett., 25, 681 (2004). [DOI: https://doi.org/10.1109/LED.2004.835791]
  5. M. Maestro-Izquierdo, M. B. Gonzalez, F. Jimenez-Molinos, E. Moreno, J. B. Roldan, and F. Campabadal, Nanotechnology, 31, 135202 (2020). [DOI: https://doi.org/10.1088/1361-6528/ab5f9a]
  6. P. K. Park and S. W. Kang, Appl. Phys. Lett., 89, 192905 (2006). [DOI: https://doi.org/10.1063/1.2387126]
  7. W. J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T. P. Ma, IEEE Electron Device Lett., 23, 649 (2002). [DOI: https://doi.org/10.1109/LED.2002.805000]
  8. M. M. Rahman, J. G. Kim, D. H. Kim, and T. W. Kim, Micromachines, 10, 361 (2019). [DOI: https://doi.org/10.3390/mi10060361]
  9. C. Mahata, M. Kang, and S. Kim, Nanomaterials, 10, 2069 (2020). [DOI: https://doi.org/10.3390/nano10102069]
  10. S. J. Ding, D. W. Zhang, and L. K. Wang, J. Phys. D: Appl. Phys., 40, 1072 (2007). [DOI: https://doi.org/10.1088/0022-3727/40/4/023]
  11. M.N.U. Bhuyian and D. Misra, IEEE Trans. Device Mater. Reliab., 15, 229 (2015). [DOI: https://doi.org/10.1109/TDMR.2015.2424151]
  12. M. H. Park, T. Schenk, C. M. Fancher, E. D. Grimley, C. Zhou, C. Richter, J. M. LeBeau, J. L. Jones, T. Mikolajick, and U. Schroeder, J. Mater. Chem. C, 5, 4677 (2017). [DOI: https://doi.org/10.1039/c7tc01200d]
  13. V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, J. Appl. Phys., 113, 021301 (2013). [DOI: https://doi.org/10.1063/1.4757907]
  14. A. M. Mumlyakov, M. V. Shibalov, I. V. Trofimov, M. G. Verkholetov, A. P. Orlov, G. D. Diudbin, S. A. Evlashin, P. A. Nekludova, Y. V. Anufriev, A. M. Tagachenkov, E. V. Zenova, and M. A. Tarkhov, J. Alloys Compd., 858, 157713 (2021). [DOI: https://doi.org/10.1016/j.jallcom.2020.157713]
  15. F. Mondon and S. Blonkowski, Microelectron. Reliab., 43, 1259 (2003). [DOI: https://doi.org/10.1016/S0026-2714(03)00181-1]
  16. S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, and T. Mikolajick, Adv. Funct. Mater., 22, 2412 (2012). [DOI: https://doi.org/10.1002/adfm.201103119]