• Title/Summary/Keyword: thermal-structural simulation

Search Result 144, Processing Time 0.028 seconds

Numeric simulation of near-surface moisture migration and stress development in concrete exposed to fire

  • Consolazio, Gary R.;Chung, Jae H.
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.31-46
    • /
    • 2004
  • A methodology is presented for computing stresses in structural concrete members exposed to fire. Coupled heat and moisture migration simulations are used to establish temperature, pore pressure, and liquid-saturation state variables within near-surface zones of heated concrete members. Particular attention is placed on the use of coupled heat and multiphase fluid flow simulations to study phenomena such as moisture-clogging. Once the state variables are determined, a procedure for combining the effects of thermal dilation, mechanical loads, pore pressure, and boundary conditions is proposed and demonstrated. Combined stresses are computed for varying displacement boundary conditions using data obtained from coupled heat and moisture flow simulations. These stresses are then compared to stresses computed from thermal analyses in which moisture effects are omitted. The results demonstrate that moisture migration has a significant influence on the development of thermal stresses.

A Simulation on the Thermal and Fluid about Motorcycle Muffler (모터사이클 머플러 내부 열.유동에 관한 시뮬레이션)

  • Yi, Chung-Seub;Ji, Myoung-Kuk;Shim, Kyu-Jin;Chung, Han-Shik;Lee, Cheol-Jae;Bae, Jae-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2642-2647
    • /
    • 2007
  • This study represents numerical study on the thermal and fluid flow characteristics of exhaust gas in a motorcycle muffler. The reference engine was used 124.cc small displacement. Numerical analysis with computational fluid dynamics(CFD) was carried out to investigate the exhaust gas that flow into a motorcycle muffler. The STAR-CD S/W used to three dimensional steady state CFD analysis in a muffler. And than We got the information of static pressure it is used to structural analysis ant the first baffle plate using the commercial CAE code ANSYS workbench. Exhaust gas flow third chamber from frist chamber and running second chamber. A simulation result shows that each chamber of muffler temperature is about 460 K, 445 and 463K and pressure is about 22,000 Pa, 16,000 Pa and 10,000 Pa.

  • PDF

Heat resistance of carbon nanoonions by molecular dynamics simulation

  • Wang, Xianqiao;Lee, James D.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.247-255
    • /
    • 2011
  • Understanding the structural stability of carbon nanostructure under heat treatment is critical for tailoring the thermal properties of carbon-based material at small length scales. We investigate the heat resistance of the single carbon nanoball ($C_{60}$) and carbon nanoonions ($C_{20}@C_{80}$, $C_{20}@C_{80}@C_{180}$, $C_{20}@C_{80}@C_{180}C_{320}$) by performing molecular dynamics simulations. An empirical many-body potential function, Tersoff potential, for carbon is employed to calculate the interaction force among carbon atoms. Simulation results shows that carbon nanoonions are less resistive against heat treatment than single carbon nanoballs. Single carbon nanoballs such $C_{60}$ can resist heat treatment up to 5600 K, however, carbon nanoonions break down after 5100 K. This intriguing result offers insights into understanding the thermal-mechanical coupling phenomena of nanodevices and the complex process of fullerenes' formation.

Structural Performance of Reinforced Concrete Flat Plate Buildings Subjected to Fire

  • George, Sara J.;Tian, Ying
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.111-121
    • /
    • 2012
  • The research presented in this paper analytically examines the fire performance of flat plate buildings. The modeling parameters for the mechanical and thermal properties of materials are calibrated from relevant test data to minimize the uncertainties involved in analysis. The calibrated models are then adopted to perform a nonlinear finite element simulation on a flat plate building subjected to fire. The analysis examines the characteristics of slab deflection, in-plane deformation, membrane force, bending moment redistribution, and slab rotational deformation near the supporting columns. The numerical simulation enables the understanding of structural performance of flat plate under elevated temperature and, more importantly, identifies the high risk of punching failure at slab-column connections that may trigger large-scale failure in flat plate structures.

A Study on the Buckling Strength of the Skirt Structure in the Spherical LNG Carriers (구형 LNG운반선의 탱크지지 구조인 스커트의 좌굴강도에 대한 연구)

  • Kim, Ul-Nyeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.393-405
    • /
    • 2017
  • This paper deals with the buckling strength of the skirt structure in the spherical LNG carriers. The spherical cargo tank systems consist of spherical tank, skirt, tank cover, pump tower, etc. The skirt supports the spherical cargo tank and is connected with ship hull structure. It is designed to act as a thermal brake between the tank and the hull structure by reducing the thermal conduction from the tank to the supporting structure. It is built up of three parts, upper aluminum part, middle stainless steel part and lower carbon steel part. The 150K spherical LNG carrier was designed and carried out the strength verification under Classification Societies Rule. The design loads due to acceleration, thermal distribution, self-weight and cargo weight were estimated considering requirements of the Class Rule and numerical simulation analyses. Based on the obtained design loads and experienced project data, the initial structure scantling was carried out. To verify the structural integrity, theoretical and numerical analyses were carried out and strength was evaluated aspect of buckling capacity. The results by LR and DNV design code are shown and discussed.

A study on PCB Heat Dissipation Characteristics of High Density Power Supply for E-mobility (E-mobility용 고밀도 전원장치의 PCB방열 특성해석에 관한 연구)

  • Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.528-533
    • /
    • 2021
  • This paper presents the PCB heat dissipation characteristics of high density DC-DC converter for electric vehicles. This paper also analyzes the heat dissipation structure of the high density DC-DC converter and optimizes the PCB heat dissipation design of the high density power system through thermal analysis simulation. Based on heat transfer theory, the thermal path of general electronic devices is analyzed and the thermal resistance equivalent circuit is modeled in this paper. Additionally, the thermal resistance equivalent circuit of the 500W synchronous buck converter, which is addressed in this paper, is modeled to present a structural heat dissipation path for better thermal performance. The validity of the proposed scheme is verified through the thermal analysis simulation results and experiments applying multi-surface heat dissipation structure to a 500[W](12[V], 41.67[A]) synchronous buck converter prototype with an input voltage 72[V].

A Prediction Method of Temperature Distribution on the Wafer in a Rapid Thermal Process System with Multipoint Sensing (고속 열처리 시스템에서 웨이퍼 상의 다중점 계측에 의한 온도 분포 추정 기법 연구)

  • Sim, Yeong-Tae;Lee, Seok-Ju;Min, Byeong-Jo;Jo, Yeong-Jo;Kim, Hak-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.2
    • /
    • pp.62-67
    • /
    • 2000
  • The uniformity of temperature on a wafer is one of the most important parameters to control the RTP (Rapid Thermal Process) with proper input signals. Since it is impossible to achieve the uniformity of temperature without exact estimation of temperature at all points on the wafer, the difficulty of understanding internal dynamics and structural complexities of the RTP is a primary obstacle to accurately measure the distributed temperatures on the wafer. Furthermore, it is also hard to accomplish desirable estimation because only few pyrometers have been commonly available in the general equipments. In the paper, a thermal model based on the chamber geometry of the AST SHS200 RTP system is developed to effectively control the thermal uniformity on the wafer. First of all, the estimation method of one-point measurement is developed, which is properly extended to the case of multi-point measurements. This thermal model is validated through certain simulation and experiments. The work can be usefully contributed to building a run-by-run or a real-time controls of the RTP.

  • PDF

Deformation Analysis Considering Thermal Expansion of Injection Mold (사출금형의 열팽창을 고려한 변형 분석)

  • Kim, Jun Hyung;Yi, Dae-Eun;Jang, Jeong Hui;Lee, Min Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.893-899
    • /
    • 2015
  • In the design of injection molds, the temperature distribution and deformation of the mold is one of the most important parameters that affect the flow characteristics, flash generation, and surface appearance, etc. Plastic injection analyses have been carried out to predict the temperature distribution of the mold and the pressure distribution on the cavity surface. As the input loads, we transfer the temperature and pressure results to the structural analysis. We compare the structural analysis results with the thermal expansion effect using the actual flash and step size of a smartphone cover part. To reduce the flash problem, we proposed a new mold design, and verified the results by performing simulations.

Structural Reliability Analysis of Subsea Tree Tubing Hanger (Sub-sea 트리 튜빙 행어(tubing hanger)의 구조 신뢰성 해석)

  • Kim, Hyunjin;Yang, Youngsoon;Kim, Sunghee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.212-219
    • /
    • 2014
  • As subsea production has been revived up, the demand of subsea equipment has also been increased. Among the equipment, subsea tree plays a major role in safety. The tubing hanger is one of the most important components in subsea tree. In this study structural reliability analysis on dual bore tubing hanger of subsea tree is performed. The target reliability which is introduced in ISO regulation is used for judging whether tubing hanger is safe or not. The considered loads are working pressure, working temperature and suspended tubing weight. Thermal-stress analysis on tubing hanger is performed and kriging model is created based on the results of FEM analysis. According to von Mises criterion, limit state equation can be estimated. Reliability analysis is performed by using level 2 method and the result is verified by that of Monte Carlo Simulation. For finding most probable failure point, enhanced HL-RF method is adopted. Because the reliability of model doesn't reach target reliability, an improvement measure should be considered. Thus, it is suggested to change the material of tubing hanger main body to AISI 4140.

Analysis with Directional Solidification in Silicon Melting Process (실리콘 용융 공정에서 방향성 응고에 관한 특성 분석)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1707-1710
    • /
    • 2014
  • This paper is the study for the directional solidification of the ingot through the thermal analysis simulation and structural change of casting furnace. The activation analysis of metal impurities were also detected the total number of 10 different metals, but the concentration distribution showed no significant positional deviations in the same position from the top to the bottom. With the results of thermal analysis simulation, the silicon as a whole has reached the melting temperature as the retention time 80 min. The best cooling conditions showed at the upper cooling temperature $1,400^{\circ}C$ and cooling time 60min. The fabricated wafers showed the superior etching result at the grain boundary than that of existing commercial wafers.