DOI QR코드

DOI QR Code

Heat resistance of carbon nanoonions by molecular dynamics simulation

  • Wang, Xianqiao (Department of Mechanical and Aerospace Engineering, The George Washington University) ;
  • Lee, James D. (Department of Mechanical and Aerospace Engineering, The George Washington University)
  • Received : 2011.06.05
  • Accepted : 2011.10.24
  • Published : 2011.12.25

Abstract

Understanding the structural stability of carbon nanostructure under heat treatment is critical for tailoring the thermal properties of carbon-based material at small length scales. We investigate the heat resistance of the single carbon nanoball ($C_{60}$) and carbon nanoonions ($C_{20}@C_{80}$, $C_{20}@C_{80}@C_{180}$, $C_{20}@C_{80}@C_{180}C_{320}$) by performing molecular dynamics simulations. An empirical many-body potential function, Tersoff potential, for carbon is employed to calculate the interaction force among carbon atoms. Simulation results shows that carbon nanoonions are less resistive against heat treatment than single carbon nanoballs. Single carbon nanoballs such $C_{60}$ can resist heat treatment up to 5600 K, however, carbon nanoonions break down after 5100 K. This intriguing result offers insights into understanding the thermal-mechanical coupling phenomena of nanodevices and the complex process of fullerenes' formation.

Keywords

References

  1. Cagle, D.W., Kennel, S.J., Mirzadeh, S., Alford, J.M. and Wilson, L.J. (1999), "In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers", Proceedings of the National Academy of Sciences of the United States of America, 96(9), 5182-5187. https://doi.org/10.1073/pnas.96.9.5182
  2. Chen, C.C., Kelty, S.P., et al. (1991), "(RbxK1-x)3C60 superconductors: formation of a continuous series of solid solutions", Science, 253(5022), 886-888. https://doi.org/10.1126/science.253.5022.886
  3. Chen, H.Y., Liu, Z.F., Gong, X.G. and Sun, D.Y. (2011), "Design of a one-way nanovalve based on carbon nanotube junction and C-60", Microfluid. Nanofluid., 10(4), 927-933. https://doi.org/10.1007/s10404-010-0719-8
  4. Dong, L., Nelson, B.J., Fukuda, T. and Arai, F. (2006), "Towards nanotube linear servomotors", IEEE T. Autom. Sci. Eng., 3(3), 228-235. https://doi.org/10.1109/TASE.2006.875551
  5. Eleanor, E.B.C. and Frank, R. (2000), "Fullerene reactions", Rep. Prog. Phys., 63(7), 1061. https://doi.org/10.1088/0034-4885/63/7/202
  6. Erkoc, S. (2002), "Stability of carbon nanoonion C-20@C-60@C-240: molecular dynamics simulations", Nano Lett., 2(3), 215-217. https://doi.org/10.1021/nl0100825
  7. Fleishman, D., Klafter, J., Porto, M. and Urbakh, M. (2007), "Mesoscale engines by nonlinear friction", Nano Lett., 7(3), 837-842. https://doi.org/10.1021/nl070003a
  8. Hebard, A.F., Rosseinsky, M.J., Haddon, R.C., Murphy, D.W., Glarum, S.H., Palstra, T.T.M., Ramirez, A.P. and Kortan, A.R. (1991), "Superconductivity at 18 K in potassium-doped C60", Nature, 350(6319), 600-601. https://doi.org/10.1038/350600a0
  9. Kim, P., Shi, L., Majumdar, A. and McEuen, P.L. (2001), "Thermal transport measurements of individual multiwalled nanotubes", Phys. Rev. Lett., 87(21), 215502. https://doi.org/10.1103/PhysRevLett.87.215502
  10. Kral, P. and Sadeghpour, H.R. (2002). "Laser spinning of nanotubes: a path to fast-rotating microdevices", Phys. Rev. B., 65(16), 161401. https://doi.org/10.1103/PhysRevB.65.161401
  11. Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F. and Smalley, R.E. (1985), "C60: buckminsterfullerene", Nature, 318(6042), 162-163. https://doi.org/10.1038/318162a0
  12. Lifshitz, C. (2000), "Carbon clusters", Int. J. Mass Spectrom., 200(1-3), 423-442. https://doi.org/10.1016/S1387-3806(00)00350-X
  13. Neto, A.M.J.C. and Oliveira, C.X. (2010), "Nanoscillator and gun under temperature effect", J. Nanosci. Nanotechnol., 10(9), 5755-5758. https://doi.org/10.1166/jnn.2010.2466
  14. Noon, W.H., Kong, Y.F. and Ma, J. (2002), "Molecular dynamics analysis of a buckyball-antibody complex", Proceedings of the National Academy of Sciences of the United States of America, 99, 6466-6470. https://doi.org/10.1073/pnas.022532599
  15. Pop, E., Mann, D., Wang, Q., Goodson, K. and Dai, H. (2006), "Thermal conductance of an individual singlewall carbon nanotube above room temperature", Nano Lett., 6(1), 96-100. https://doi.org/10.1021/nl052145f
  16. Rosseinsky, M.J. Ramirez, A.P., Glarum, S.H., Murphy, D.W., Haddon, R.C., Hebard, A.F., Palstra, T.T.M., Kortan, A.R., Zahurak, S.M. and Makhija, A.V. (1991), "Superconductivity at 28 K in Rb_{x}C_{60} ", Phys. Rev. Lett., 66(21), 2830. https://doi.org/10.1103/PhysRevLett.66.2830
  17. Sazonova, V., Yaish, Y., Ustunel, H., Roundy, D., Arias, T.A. and McEuen, P.L. (2004), "A tunable carbon nanotube electromechanical oscillator", Nature, 431(7006), 284-287. https://doi.org/10.1038/nature02905
  18. Scuseria, G.E. (1996), "Ab initio calculations of fullerenes", Science, 271(5251), 942-945. https://doi.org/10.1126/science.271.5251.942
  19. Tersoff, J. (1989), "Modeling solid-state chemistry: interatomic potentials for multicomponent systems", Phys. Rev. B., 39(8), 5566-5568. https://doi.org/10.1103/PhysRevB.39.5566
  20. Weast, R.C. (1988), CRC handbook of chemistry and physics, Boca Raton, FL, CRC Press.
  21. Wilson, L.J., Cagle, D.W., Thrash, T.P., Kennel, S.J., Mirzadeh, S., Alford, J.M. and Ehrhardt, G.J. (1999), "Metallofullerene drug design", Coordin. Chem. Rev., 190-192, 199-207. https://doi.org/10.1016/S0010-8545(99)00080-6
  22. Xu, Z.P., Zheng, Q.S. and Chen, G. (2007), "Thermally driven large-amplitude fluctuations in carbon-nanotubebased devices: molecular dynamics simulations", Phys. Rev. B., 75(19), 195445. https://doi.org/10.1103/PhysRevB.75.195445

Cited by

  1. Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers vol.6, pp.3, 2013, https://doi.org/10.12989/imm.2013.6.3.271
  2. Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers vol.3, pp.4, 2014, https://doi.org/10.12989/csm.2014.3.4.329
  3. Mechanical properties of bulk carbon nanostructures: effect of loading and temperature vol.16, pp.36, 2014, https://doi.org/10.1039/C4CP01952K
  4. ABC optimization of TMD parameters for tall buildings with soil structure interaction vol.6, pp.4, 2013, https://doi.org/10.12989/imm.2013.6.4.339