• 제목/요약/키워드: thermal vibration

검색결과 639건 처리시간 0.033초

수평가진 시스템의 열 특성 및 모멘트 성능 검증 (Verification of Thermal Characteristics and Overturning Moment for Lateral Vibration System)

  • 은희광;임종민;문상무;문남진;이동우;최석원
    • 항공우주기술
    • /
    • 제8권2호
    • /
    • pp.113-121
    • /
    • 2009
  • 발사환경 시 작용하는 진동 환경을 지상에서 구현하기 위해 가진 시스템을 이용하고 있다. 진동시험은 수직, 수평 방향에 대해 수행되며, 수평방향 시험의 경우 슬립테이블 시스템과 연계하여 시험을 수행하게 된다. 최근 개발 중인 대형 위성의 경우, 위성과 진동 시험기 사이의 연결 구조물의 하중 및 동적 설계 요구 조건을 만족하기 위하여 수평가진 시스템과 열 특성이 매우 다른 스틸 소재를 이용하여 제작하였다. 본 연구에서는 수평가진 시스템과 열팽창 계수가 다른 소재를 이용하는 대형 구조물의 열 특성 및 모멘트 검증 과정과 발생한 문제점을 개선하고자 적용한 안을 제시하고자 한다.

  • PDF

Study on Comparison of Atmospheric and Vacuum Environment of Thermally-Induced Vibration Using Vacuum Chamber

  • Kong, Chang-Duk;Park, Hyun-Bum;Lee, Ha-Seaung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권1호
    • /
    • pp.26-30
    • /
    • 2010
  • The present paper studies the thermally-induced vibration phenomenon of the flexible space boom structure. In order to simulate the thermally-induced vibration phenomenon of the flexible thin boom structure of the spacecraft with the attached tip mass in space, the thermally-induced vibration including thermal flutter is experimentally investigated at various thermal environments using a heating lamp in vacuum chamber. In this experimental study, fluctuating characteristics, natural frequency and thermal strains of the thermally-induced vibration are parametrically investigated at various thermal environment conditions. Finally the thermally-induced vibration of the flexible boom structure of the orbiting earth satellite in solar radiation environment from the earth eclipse region including umbra and penumbra is simulated using the power control of the heating lamp in the vacuum chamber.

반복적 열하중을 받는 열탄점소성 구조물의 진동 특성 연구 (On Vibration Characteristics Study of Thermo-Visco-Plastic Material Under Periodic Thermal Loading)

  • 김덕관;김승조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.49-54
    • /
    • 1997
  • In this paper, vibration characteristics are considered about thermo-visco-plastic material under periodic thermal loading. When in high temperature region, thermo-visco-plastic structure has a periodic thermal loading, it is very important in an accumulated structure like a spacestation to investigate vibration characteristic, stress-strain characteristic is considered in various 2-D model by finite element method.

  • PDF

Gap 센서의 열 특성에 관한 연구 (Experimental Study on Thermal Characteristics for Gap Sensor)

  • 구재량;이두영;김두영;이대성;김성휘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.790-793
    • /
    • 2005
  • Gap Sensor is widely used to measure vibration in power plant. In general the result of the vibration measurement may have special error due to two thermal characteristics of gap sensor such as sensitivity shift and zero shift. Thermal sensitivity is change of linearity and thermal zero shift is chang of offset. It is investigated two thermal characteristics for Rap son or in this paper.

  • PDF

Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • 제6권4호
    • /
    • pp.377-397
    • /
    • 2018
  • In the present investigation, thermal buckling and free vibration characteristics of functionally graded (FG) Timoshenko nanobeams subjected to nonlinear thermal loading are carried out by presenting a Navier type solution. The thermal load is assumed to be nonlinear distribution through the thickness of FG nanobeam. Thermo-mechanical properties of FG nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model and the material properties are assumed to be temperature-dependent. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the thermal buckling and vibration analysis of graded nanobeams including size effect. Moreover, in following a parametric study is accompanied to examine the effects of the several parameters such as nonlocal parameter, thermal effect, power law index and aspect ratio on the critical buckling temperatures and natural frequencies of the size-dependent FG nanobeams in detail. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared some cases in the literature. Also, it is found that the small scale effects and nonlinear thermal loading have a significant effect on thermal stability and vibration characteristics of FG nanobeams.

열응력을 이용한 보의 강인-최적 진동제어 (Robust-Optimal Vibration Control of a Beam Using Thermal Stress)

  • 권태철;이우식;김진걸
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.232-239
    • /
    • 1993
  • The vibration damping of structure is increased by thermal actuator. The thermal actuator causes thermal stress across the section of structure. The several kinds of control theories are proposed and the proposed control theories are successful in increasing vibration damping. This scheme can be effectively applied to large space structure [LSS] having very low natural frequencies.

  • PDF

미소진동저감용 진동절연기의 성능유지를 위한 극저온 냉각용 압축기 조립체 열제어 설계 (Thermal Design of Cryogenic Compressor with Strategies for Keeping Performance of Micro-vibration Isolation System)

  • 오현웅;이경주;정석용;신소민
    • 한국항공우주학회지
    • /
    • 제40권3호
    • /
    • pp.237-242
    • /
    • 2012
  • 극저온이 요구되는 우주용 탑재장비의 냉각을 위해 일반적으로 Pulse Tube-type 압축기가 적용되고 있으며, 궤도상에서 압축기의 냉각성능, 임무수명 및 비대칭 온도분포에 의한 미소진동발생 방지를 위해 압축기를 허용온도 범위로 유지하는 열제어가 필요하다. 압축기는 궤도 운용 시 미소진동을 발생하여 관측성능이 요구되는 탑재체의 지향성능을 저하시키는 원인으로 작용한다. 본 논문에서는 압축기의 미소진동 방지를 목적으로 적용된 진동절연기의 성능유지 및 압축기의 허용온도범위 유지를 위한 열제어 성능을 동시에 만족하는 우주용 압축기 조립체의 열설계를 제안하였으며, 설계의 유효성을 해석적으로 입증하였다.

Thermal-induced nonlocal vibration characteristics of heterogeneous beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in materials Research
    • /
    • 제6권2호
    • /
    • pp.93-128
    • /
    • 2017
  • In this paper, thermal vibration behavior of nanoscale beams made of functionally graded (FG) materials subjected to various types of thermal loading are investigated. A Reddy shear deformation beam theory which captures both the microstructural and shear deformation effects without the need for any shear correction factors is employed. Material properties of FG nanobeam are assumed to be temperature-dependent and vary gradually along the thickness according to the power-law form. The influence of small scale is captured based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. The comparison of the obtained results is conducted with those of nonlocal Euler-Bernoulli beam theory and it is demonstrated that the proposed modeling predict correctly the vibration responses of FG nanobeams. The effects of nonlocal parameter, material graduation, mode number, slenderness ratio and thermal loading on vibration behavior of the nanobeams are studied in detail.

A nonlocal integral Timoshenko beam model for free vibration analysis of SWCNTs under thermal environment

  • Liani, Mohamed;Moulay, Noureddine;Bourada, Fouad;Addou, Farouk Yahia;Bourada, Mohamed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Advances in materials Research
    • /
    • 제11권1호
    • /
    • pp.1-22
    • /
    • 2022
  • In this paper, the nonlocal integral Timoshenko beam model is employed to study the free vibration characteristics of singled walled carbon nanotubes (SWCNTs) including the thermal effect. Based on the nonlocal continuum theory, the governing equations of motion are formulated by considering thermal effect. The influences of small scale parameter, the chirality of SWCNTs, the vibrational mode number, the aspect ratio of SWCNTs and temperature changes on the thermal vibration properties of single-walled nanotubes are examined and discussed. Results indicate significant dependence of natural frequencies on the nonlocal parameter, the temperature change, the aspect ratio and the chirality of SWCNTs. This work should be useful reference for the application and the design of nanoelectronics and nanoelectromechanical devices that make use of the thermal vibration properties of SWCNTs.