• Title/Summary/Keyword: thermal load

Search Result 1,838, Processing Time 0.031 seconds

Design of a 40 channel SQUID system (40채널 SQUID 시스템의 설계)

  • Lee, Y.H.;Kim, J.M.;Kwon, H.C.;Lim, C.M.;Lee, S.K.;Park, Y.K.;Park, J.C.;Lee, D.H.;Shin, J.K.;Ahn, C.B.;Park, M.S.;Hur, Y.;Hong, J.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.191-192
    • /
    • 1998
  • We report on the design of a low-noise 40 channel SQUID system for biomagnetism. We used low-noise SQUID sensor with the pickup coil integrated on the same wafer as the SQUID. The SQUID electronics were simplified by increasing the voltage output of the SQUID. The SQUID insert was designed to have low thermal load, minimizing the liquid helium loss. The digital signal processing provides versatile analysis tools and the software is based on the object-oriented programming. For the effective localization of the source location, solutions of the inverse problems based on the lead-field and the simulated anneal ins were studied.

  • PDF

Creep life Prediction for W.M. of High Cr-Mo Steel using Modified Power-law (고 Cr-Mo강의 수정멱수법칙을 이용한 W.M. 크리프 수명예측)

  • An, Jong-Kyo;Yu, Hyo-Sun;Yang, Sung-Mo;Kang, Hee-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.951-956
    • /
    • 2008
  • The high temperature creep properties of the generating plant's high temperature tube, pipe and header and such are very significant in accordance with long-time exposure to the high temperature and pressure environment. Not only this, but as the welding procedure is compulsory for the cohesion of components, the creep properties regarding the local microstructures of steel weldment are very important. In order to understand the creep properties regarding the local microstructures of steel weldment, the SP-Creep test which is easy to get sample from the field component was conducted. The local microstructure of steel weldment, that is, W.M. and B.M.'s microstructures were observed using the SEM. The rupture time of W.M. was longer as 110 % averagely in a same condition, which is the consequence of the difference of the microstructure. Each lethargy coefficient of B.M. and W.M. is evaluated by the relation among the temperature, load and the rupture time from SP-Creep Test. The life estimation equation can be induced by the transformation of Power-law. B.M. and W.M. for each $550\;^{\circ}C$ and $575\;^{\circ}C$, the very similar to normal temperature of the domestic thermal power generation in working, are estimated.

Creep Behavior of Plastics Used in Automobile Instrument Panels (자동차 인스트루먼트 패널에 사용되는 플라스틱의 크리프 거동)

  • Kim, Young-Sam;Jeon, Chi-Hoon;Tumur-Ochir, Erdenebat;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1549-1556
    • /
    • 2011
  • Tensile and creep tests were performed at various temperatures to investigate the mechanical properties of plastics used in automotive instrument panels. Mechanical properties such as Young's modulus and Poisson's ratios changed markedly with the test temperature. Three-point bending creep tests were performed for three kinds of plastics under four loading conditions. Coefficients in the time-hardening power law creep equation were obtained from the experiment, and the creep behavior was represented by a simple expression. The results of finite element creep analysis showed good agreement with the experimental results, while the difference between the numerical and experimental results increased with the load.

Endurance Life of Taper Roller Bearing for Wheel Loader Axles (휠 로더 차축 테이퍼 롤러 베어링의 내구수명)

  • Yoo, Dae Won;Lee, Jai Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1323-1330
    • /
    • 2013
  • A wheel loader is a type of construction machinery that is capable of performing a variety of tasks, and demands on its functional diversity and structural reliability are growing. A wheel bearing is one of the core components that determine the life of the loader; taper roller bearings are commonly used for this purpose. The lifetime of a bearing is typically calculated based only on its load and revolution speed. The initial preload of a taper roller bearing is a critical factor that directly affects its endurance life. In this study, the relations between the endurance life and preload characteristics including the amount of preload according to the weight, rotational speed, and thermal modification applied to tapered roller bearings are presented. When the temperature is $100^{\circ}C$, an excessive preload condition is expected compared with that at room temperature, and the durable life decreases by 20.3 %.

Development of Temperature Sensor Calibration System Using Cryocooler (극저온 냉동기를 이용한 온도센서 교정시스템 개발)

  • Kim, Myung Su;Choi, Yeon Suk;Kim, Dong Lak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.87-93
    • /
    • 2013
  • The selection of the temperature sensor in a cryogenic system depends on the temperature range, shape, and accuracy. An accurate temperature sensor is essential for improving the reliability of an experiment. We have developed a calibration system for cryogenic temperature sensors using a two-stage cryocooler. To reduce the heat load, a thermal shield is installed at the first stage with multiple layer insulation (MLI). We have also developed a sensor holder for calibrating more than 20 sensors simultaneously in order to save time and reduce costs. This system can calibrate sensors at variable temperatures via temperature control using a heater. In this paper, we present the design and fabrication of the temperature sensor calibration system and a representative experimental result.

A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation

  • Tounsi, Abdelouahed;Al-Dulaijan, S.U.;Al-Osta, Mohammed A.;Chikh, Abdelbaki;Al-Zahrani, M.M.;Sharif, Alfarabi;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.511-524
    • /
    • 2020
  • In this research, a simple four-variable trigonometric integral shear deformation model is proposed for the static behavior of advanced functionally graded (AFG) ceramic-metal plates supported by a two-parameter elastic foundation and subjected to a nonlinear hygro-thermo-mechanical load. The elastic properties, including both the thermal expansion and moisture coefficients of the plate, are also supposed to be varied within thickness direction by following a power law distribution in terms of volume fractions of the components of the material. The interest of the current theory is seen in its kinematics that use only four independent unknowns, while first-order plate theory and other higher-order plate theories require at least five unknowns. The "in-plane displacement field" of the proposed theory utilizes cosine functions in terms of thickness coordinates to calculate out-of-plane shear deformations. The vertical displacement includes flexural and shear components. The elastic foundation is introduced in mathematical modeling as a two-parameter Winkler-Pasternak foundation. The virtual displacement principle is applied to obtain the basic equations and a Navier solution technique is used to determine an analytical solution. The numerical results predicted by the proposed formulation are compared with results already published in the literature to demonstrate the accuracy and efficiency of the proposed theory. The influences of "moisture concentration", temperature, stiffness of foundation, shear deformation, geometric ratios and volume fraction variation on the mechanical behavior of AFG plates are examined and discussed in detail.

Effects of Inlet-Manifold Water Addition on the Performance of Kerosene Engines (석유(石油)엔진의 흡기관내(吸氣管內)의 물 부가(附加)가 엔진성능(性能)에 미치는 영향(影響))

  • Yi, Chun Woo;Ryu, Kwan Hee
    • Journal of Biosystems Engineering
    • /
    • v.8 no.1
    • /
    • pp.38-46
    • /
    • 1983
  • This study was carried out to investigate the possibility of improving the performance of a kerosene engine with water addition. The engine used in this study was a single-cylinder, four-cycle kerosene engine with the compression ratio of 4.5. Water could be successfully added into the inlet manifold by an extra carburetor for the volumetric ratios of 5, 10, 20, and 30 percents. Variable speed tests at wide-open throttle were performed for five speed levels in the range of 1,000 to 2,200rpm for each fuel type. Volumetric efficiency and brake specific fuel consumption were determined, and brake thermal efficiency based on the lower heats of combustion of kerosene was calculated. To examine variation in fuel consumption, CO concentration, and cooling water temperature, part load tests were also performed. The results obtained are summarized as follow. (1) Brake torque increased almost in proportion to volumetric efficiency. But the ratio of increase in torque was greater than that of volumetric efficiency. Mean torque over the speed range of 1,000 to 2,200rpm increased 1, 3, 7, and 2 percents for 5, 10, 20, and 30 percents water addition, respectively. The increase in brake torque with water addition was greater at lower speeds. (2) Mean brake specific fuel consumption over the speed range of 1,000 to 2,200rpm decreased 1, 2, 3, and 3 percents for 5, 10, 20, and 30 percents water addition, respectively. (3) Mean temperature of cooling water over the speed range of 1,000 to 2,200rpm decreased 2, 4, 8, and 12 percents for 5, 10, 20, and 30 percents water addition, respectively. (4) The effects of decreasing CO concentration in the exhaust emissions with water addition were significant. At the speed range of 1,000 to 2,200rpm, CO concentration in the exhaust emissions decreased 2, 10, 23, percents for 5, 10, and 20 percents water addition, respectively. (5) Deposits were not discovered in the combustion chamber during the experiment. However, a little rust was formed in the water-supply carburetor.

  • PDF

An Experimental Study on the Temperature Difference between the Top and Bottom Flange in Steel Girder without Concrete Slab (콘크리트 슬래브가 없는 강재주형에서 상하연 온도차에 대한 실측연구)

  • Shin, Dong-Wook;Kim, Kyoung-Nam;Jung, Kyoung-Sup;Lee, Seong-Haeng
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.99-106
    • /
    • 2014
  • In order to study the reasonable design thermal loads, the steel box girder bridge specimen which have no concrete slab was manufactured with the real size dimension. The temperature data were measured for 5 month at the 18 thermo gauges which were attached according to height. The temperature differences between the top and bottom flange in steel box girder specimen were calculated and the temperature gradient models were proposed by the probabilistic method. This proposed model showed a correlation of approximately 97% when compared with the similar model of Euro Code. Thus, the temperature gradient models which were suggested in this study may be used as the basis data in calculating the design load temperature.

Comparison of fracture strength after thermomechanical aging between provisional crowns made with CAD/CAM and conventional method

  • Reeponmaha, Tanapon;Angwaravong, Onauma;Angwarawong, Thidarat
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.218-224
    • /
    • 2020
  • PURPOSE. The objectives of this study were to evaluate the fracture strength and fracture patterns of provisional crowns fabricated from different materials and techniques after receiving stress from a simulated oral condition. MATERIALS AND METHODS. A monomethacrylate-based resin (Unifast Trad) and a bis-acryl-based (Protemp 4) resin were used to fabricate provisional crowns using conventional direct technique. A milled monomethacrylate resin (Brylic Solid) and a 3D-printed bis-acrylate resin (Freeprint Temp) were chosen to fabricate provisional crowns using the CAD/CAM process. All cemented provisional crowns (n=10/group) were subjected to thermal cycling (5,000 cycles at 5°-55℃) and cyclic occlusal load (100 N at 4 Hz for 100,000 cycles). Maximum force at fracture was tested using a universal testing machine. RESULTS. Maximum force at fracture (mean ± SD, N) of each group was 657.87 ± 82.84 for Unifast Trad, 1125.94 ± 168.07 for Protemp4, 953.60 ± 58.88 for Brylic Solid, and 1004.19 ± 122.18 for Freeprint Temp. One-way ANOVA with Tamhane post hoc test showed that the fracture strength of Unifast Trad was statistically significantly lower than others (P<.01). No statistically significant difference was noted among other groups. For failure pattern analysis, Unifast Trad and Brylic Solid showed less damage than Protemp 4 and Freeprint Temp groups. CONCLUSION. Provisional crowns fabricated using the CAD/CAM process and the conventionally fabricated bis-acryl resins exhibited significant higher fracture strength compared to conventionally fabricated monomethacrylate resins after the aging regimen. Therefore, CAD/CAM milling and 3D printing of provisional restorations may be good alternatives for long term provisionalization.

Countermeasure against the Increse of Axial Force in Strut due to Thermal Load-A Case Study (온도하중에 의한 버팀보 축력증가 대책사례)

  • Kwon, Oh-Sung;Lee, Jong-Sung
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.193-198
    • /
    • 2006
  • 서울지하철 0호선 000 공구 000 정거장 구간은 버팀보 7단, 어스앵커 2단, 그리고 록볼트 3단의 개착식 가시설로 설계되어 있다. 버팀보 및 앵커 축력 계측을 위해 변형률계 및 하중계를 설치하고 연속계측 중, 4~6단 버팀보 수 개소에서 5월부터 하중이 급격히 증가하엿다. 따라서 굴착작업을 즉시 중단하고 관리기준치를 초과하는 하중이 계측된 STA.9k+750~800 구간의 5, 6단 버팀보 위치에 격간으로 총 20본(10본${\times}$2단), 그리고 STA.9k+900~920 구간의 7단 버팀보 위치에 격간으로 총 9본(9본${\times}$1단)의 버팀보를 추가적으로 설치 완료하였다. 이 때, 추가 버팀보는 선행하중잭을 이용하여 10ton의 선행하중을 재하하였으며, 향후 추가 보강 필요시 재하하중 증가가 가능하도록 조치하였다. 또한, 추가 설치된 버팀보, 그리고 이상하중이 발생된 버팀보에 계측기를 추가 설치하여 지속적으로 계측중이며, 띠장의 변위발생 구간은 스티프너 및 앵글 등을 응급조치하였다. 본 사례 연구에서는 보강 전.후의 계측결과 및 수치해석적 분석을 이용하여 가시설 굴착시 버팀보의 하중증가 원인 및 보강 효과를 규명하고, 향후 추가 굴착시의 안정성 여부를 검토해 보고자 하였다. 계측값 분석 결과, 추가버팀보 보강 후의 기존버팀보 축력 계측 결과 보강 직후 기존버팀보의 축력이 어느정도 감소하였으며, 이후 시간이 지남에 따라 축력이 더 이상 증가하지 않고 일정한 값에 수렴하는 경향을 보였다. 또한 수치해석 결과 온도 증가가 버팀보 축력증가에 미치는 영향은 버팀보 위치의 지반강성이 클수록 크며, 축력증가는 온도증가에 대체적으로 비례하였고, 추가버팀보의 보강 효과는 선행하중의 크기에 비례하는 것으로 나타났으며, 잔여굴착은 전반적으로 기존 버팀보의 축력 증가에 영향을 미치는 것으로 나타났다. 따라서 추가굴착시 지속적인 계측을 수행하며, 급격한 축력증가가 관찰될 경우 현재 보강된 버팀보의 선행하중 추가 재하, 굴착에 가장 큰 영향을 받는 최하단 버팀보의 추가보강 등의 대책방안을 제시하였다.

  • PDF