Browse > Article
http://dx.doi.org/10.12989/scs.2020.34.4.511

A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation  

Tounsi, Abdelouahed (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
Al-Dulaijan, S.U. (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
Al-Osta, Mohammed A. (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
Chikh, Abdelbaki (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Al-Zahrani, M.M. (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
Sharif, Alfarabi (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
Tounsi, Abdeldjebbar (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Publication Information
Steel and Composite Structures / v.34, no.4, 2020 , pp. 511-524 More about this Journal
Abstract
In this research, a simple four-variable trigonometric integral shear deformation model is proposed for the static behavior of advanced functionally graded (AFG) ceramic-metal plates supported by a two-parameter elastic foundation and subjected to a nonlinear hygro-thermo-mechanical load. The elastic properties, including both the thermal expansion and moisture coefficients of the plate, are also supposed to be varied within thickness direction by following a power law distribution in terms of volume fractions of the components of the material. The interest of the current theory is seen in its kinematics that use only four independent unknowns, while first-order plate theory and other higher-order plate theories require at least five unknowns. The "in-plane displacement field" of the proposed theory utilizes cosine functions in terms of thickness coordinates to calculate out-of-plane shear deformations. The vertical displacement includes flexural and shear components. The elastic foundation is introduced in mathematical modeling as a two-parameter Winkler-Pasternak foundation. The virtual displacement principle is applied to obtain the basic equations and a Navier solution technique is used to determine an analytical solution. The numerical results predicted by the proposed formulation are compared with results already published in the literature to demonstrate the accuracy and efficiency of the proposed theory. The influences of "moisture concentration", temperature, stiffness of foundation, shear deformation, geometric ratios and volume fraction variation on the mechanical behavior of AFG plates are examined and discussed in detail.
Keywords
advanced functionally graded materials; four-variable integral plate theory; hygro-thermo-mechanical loading; elastic foundation;
Citations & Related Records
Times Cited By KSCI : 15  (Citation Analysis)
연도 인용수 순위
1 Mahapatra, T.R. and Panda, S.K. (2015), "Effects of hygrothermal conditions on free vibration behaviour of laminated composite structures", IOP CONFERENCE SERIES: MATERIALS SCIENCE and Engineering, 75(1), 012016.   DOI
2 Mehar, K., Panda, S.K. and Patle, B.K. (2017), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466.   DOI
3 Mehar, K. and Panda, S.K. (2018), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565.   DOI
4 Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates", ASME J. Appl. Mech., 18, 31-38.   DOI
5 Nguyen, T.K., Sab, K. and Bonnet, G. (2008), "First-order shear deformation plate models for functionally graded materials", Compos. Struct., 83(1), 25-36. https://doi.org/10.1016/j.compstruct.2007.03.004.   DOI
6 Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.   DOI
7 Panjehpour, M., Woo, E., Loh, K. and Deepak, T.J. (2018), "Structural Insulated Panels: State-of-the-Art", Trends in civil Engineering and its architecture, 3(1) 336-340.
8 Sahoo, S.S., Panda, S.K. and Singh, V.K. (2016), "Nonlinear flexural analysis of shallow carbon/epoxy laminated composite curved panels: experimental and numerical investigation", J. Eng. Mech., 142(4), 04016008. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001040   DOI
9 Alibeigloo, A. (2010), "Exact solution for thermo-elastic response of functionally graded rectangular plates", Compos. Struct., 92(1), 113-121. https://doi.org/10.1016/j.compstruct.2009.07.003.   DOI
10 Aliaga, J.W. and Reddy, J.N. (2004), "Nonlinear thermoelastic analysis of functionally graded plates using the third-order shear deformation theory", Int. J. Comp. Eng. Sci., 5(4), 753-779. https://doi.org/10.1142/S146587630400266.   DOI
11 Benferhat, R., HassaineDaouadji, T., Hadji, L. and Said Mansour, M. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21(1), 123 -136. https://doi.org/10.12989/scs.2016.21.1.123.   DOI
12 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.   DOI
13 Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arabian J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.   DOI
14 Avcar, M. (2016), "Effects of material non-homogeneity and two parameter elastic foundation on fundamental frequency parameters of Timoshenko beams", Acta Physica Polonica A, 130(1), 375-378. DOI: 10.12693/APhysPolA.130.375.   DOI
15 Bouderba, B. (2018), "Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory", Steel Compos. Struct., 27(3), 311-325. https://doi.org/10.12989/scs.2018.27.3.311.   DOI
16 Chavan, S.G. and Lal, A. (2017), "Dynamic bending response of SWCNT reinforced composite plates subjected to hygro-thermo-mechanical loading", Comput. Concrete, 20(2), 229-246. https://doi.org/10.12989/cac.2017.20.2.229.   DOI
17 Chen, W.Q., Bian, Z. and Ding, H. (2003), "Three-dimensional analysis of a thick FGM rectangular plate in thermal environment", J. Zhejiang Univ. Sci., 4(1), 1-7. https://doi.org/10.1007/BF02841071.   DOI
18 Chi, S.H. and Chung, Y.L. (2006a), "Mechanical behavior of functionally graded material plates under transverse load-Part I: analysis", Int. J. Solids Struct., 43(13), 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011.   DOI
19 Sayyad, A.S. and Ghugal, Y.M. (2019), "Effects of nonlinear hygrothermomechanical loading on bending of FGM rectangular plates resting on two-parameter elastic foundation using four-unknown plate theory", J. Therm. Stresses, 42(2), 213-232. https://doi.org/10.1080/01495739.2018.1469962.   DOI
20 Sahoo, S.S., Panda, S.K., Singh, V.K., Mahapatra, T.R. (2017), "Numerical investigation on the nonlinear flexural behaviour of wrapped glass/epoxy laminated composite panel and experimental validation", Arch. Appl. Mech., 87(2), 315-333. https://doi.org/10.1007/s00419-016-1195-8.   DOI
21 Sayyad, A.S. and Ghugal, Y.M. (2017a), "A unified shear deformation theory for the bending of isotropic, functionally graded, laminated and sandwich beams and plates", Int. J. Appl. Mech., 9(1), 1-36. https://doi.org/10.1142/S1758825117500077.
22 Sayyad, A.S. and Ghugal, Y.M. (2017b), "Bending, buckling and free vibration of laminated composite and sandwich beams: a critical review of literature", Compos. Struct., 171, 486-504. s://doi.org/10.1016/j.compstruct.2017.03.053.   DOI
23 Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007.   DOI
24 Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445.   DOI
25 Shahadat, M.R.B., Alam, M.F., Mandal, M.N.A. and Ali, M.M. (2018), "Thermal transportation behaviour prediction of defective graphene sheet at various temperature: A Molecular Dynamics Study", Am. J. Nanomater., 6(1), 34-40.
26 Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazilian Soc. Mech. Sci. Eng., 40, 141. https://doi.org/10.1007/s40430-018-1065-0.   DOI
27 Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018), "Numerical analysis of acoustic radiation responses of shear deformable laminated composite shell panel in hygrothermal environment", J. Sound Vib., 431, 346-366. tps://doi.org/10.1016/j.jsv.2018.06.007.   DOI
28 Chi, S.H. and Chung, Y.L. (2006b), "Mechanical behavior of functionally graded material plates under transverse load -Part II: numerical results", Int. J. Solids Struct., 43(13), 3675-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010   DOI
29 Civalek, O. and Ozturk, B. (2010), "Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation", Geomech. Eng., 2(1), 45-56. https://doi.org/10.12989/gae.2010.2.1.045.   DOI
30 Daouadji, T.H., Adim, B. and Benferhat, R. (2016), "Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation", Adv. Mater. Res., 5(1), 35-53. https://doi.org/10.12989/amr.2016.5.1.035.   DOI
31 Fadoun, O.O. (2019), "Analysis of axisymmetric fractional vibration of an isotropic thin disc in finite deformation", Comput. Concrete, 23(5), 303-309. https://doi.org/10.12989/cac.2019.23.5.303.   DOI
32 Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. ttps://doi.org/10.1016/j.ijengsci.2018.08.007.   DOI
33 Fazzolari, F.A. (2016), "Modal characteristics of P- and S-FGM plates with temperature-dependent materials in thermal environment", J. Therm. Stresses, 39(7), 854-873. https://doi.org/10.1080/01495739.2016.1189772.   DOI
34 Gulshan Taj, M.N.A., Chakrabarti, A. and Sheikh, A.H. (2013), "Analysis of functionally graded plates using higher order shear deformation theory", Appl. Math. Model., 37(18-19), 8484-8494. https://doi.org/10.1016/j.apm.2013.03.058.   DOI
35 Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), "Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM", Steel Compos. Struct., 17(5), 753-776. http://dx.doi.org/10.12989/scs.2014.17.5.753.   DOI
36 Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Hygrothermal effect on vibroacoustic behaviour of higher-order sandwich panel structure with laminated composite face sheets", Eng. Struct., 197, 109355. https://doi.org/10.1016/j.engstruct.2019.109355.   DOI
37 Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.   DOI
38 Vel, S., Batra, R. (2002), "Exact solution for thermoelastic deformations of functionally graded thick rectangular plates", AIAA J., 40(7), 1421-1433. https://doi.org/10.2514/2.1805.   DOI
39 Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. ttps://doi.org/10.1016/j.apm.2005.03.009.   DOI
40 Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001.   DOI
41 Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016b), "Nonlinear flexural analysis of laminated composite panel under hygro-thermo-mechanical loading - A Micromechanical Approach", Int. J. Comput. Methods, 13(3), 1650015.   DOI
42 Hirwani, C.K., Biswash, S.,Mehar, K. and Panda, S.K. (2018), "Numerical flexural strength analysis of thermally stressed delaminated composite structure under sinusoidal loading", IOP Conf. Series: Materials Science and Engineering, 338, 012019. doi:10.1088/1757-899X/338/1/012019   DOI
43 Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520.   DOI
44 Kar, V.R. and Panda, S.K. (2015), "Free vibration responses of temperature dependent functionally graded curved panels under thermal environment", Latin Am. J. Solids Struct., 12, 2006-2024. http://dx.doi.org/10.1590/1679-78251691.   DOI
45 Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygro-thermo-mechanical loading", Steel Compos. Struct., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011.   DOI
46 Mahapatra, T.R., Panda, S.K. and Dash, S. (2016a), "Effect of hygrothermal environment on the nonlinear free vibration responses of laminated composite plates: A nonlinear Unite element micromechanical approach", IOP CONFERENCE SERIES: MATERIALS SCIENCE and Engineering, 149(1), 012151.   DOI
47 Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016c), "Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel", Int. J. Mech. Mater. Design, 12(2), 153-171.   DOI
48 Mahapatra, T.R., Panda, S.K. (2016), "Hygrothermal effects on the flexural strength of laminated composite cylindrical panels", IOP Conference Series: Materials Science and Engineering, 115(1), 012040.   DOI