• Title/Summary/Keyword: thermal elasticity

Search Result 201, Processing Time 0.025 seconds

Nonlocal thermo-electro-mechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam

  • Ebrahimi, Farzad;Daman, Mohsen
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.351-368
    • /
    • 2017
  • To peruse the free vibration of curved functionally graded piezoelectric (FGP) nanosize beam in thermal environment, nonlocal elasticity theory is applied for modeling the nano scale effect. The governing equations are obtained via the energy method. Analytically Navier solution is employed to solve the governing equations for simply supported boundary conditions. Solving these equations enables us to estimate the natural frequency for curved FGP nanobeam under the effect of a uniform temperature change and external electric voltage. The results determined are verified by comparing the results by available ones in literature. The effects of various parameters such as nonlocality, uniform temperature changes, external electric voltage, gradient index, opening angle and aspect ratio of curved FGP nanobeam on the natural frequency are successfully discussed. The results revealed that the natural frequency of curved FGP nanobeam is significantly influenced by these effects.

Elastically-influenced instabilities in Taylor-Couette and other flows with curved streamlines: a review

  • Muller, Susan J.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.3
    • /
    • pp.117-125
    • /
    • 2008
  • Viscoelastic instabilities are of fundamental importance to understanding the physics of complex fluids and of practical importance to materials processing and fluid characterization. Significant progress has been made over the past 15 years in understanding instabilities in viscoelastic flows with curved streamlines and is reviewed here. Taylor-Couette flow, torsional flow between a cone and plate, and torsional flow between parallel plates have received special attention due to both the basic significance of these flows and their critical role in rheometry. First, we review the criteria for determining when these flows become unstable due to elasticity in the absence of inertia, and discuss the generalization of these criteria to more complex flows with curved streamlines. Then, focusing on experiments and simulations in the Taylor-Couette problem, we review how thermal sensitivity (i.e., the dependence of fluid viscosity and elasticity on temperature) and inertia affect the stability of viscoelastic flows. Finally, we conclude with some general thoughts on unresolved issues and remaining challenges related to viscoelastic instabilities.

Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams

  • Ebrahimi, Farzad;Karimiasl, Mahsa;Civalek, Omer;Vinyas, Mahesh
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.77-88
    • /
    • 2019
  • This paper infer the transient vibration of piezoelectric sandwich nanobeams, In present work, the flexoelectric effect on the mechanical properties of vibration piezoelectric sandwich nanobeam with different boundary conditions is investigated. According to the Nonlocal elasticity theory in nanostructures, the flexoelectricity is believed to be authentic for such size-dependent properties. The governing equations are derived by Hamilton's principle and boundary condition solved by Galerkin-based solution. This research develops a nonlocal flexoelectric sandwich nanobeam supported by Winkler-Pasternak foundation. The results of this work indicate that natural frequencies of a sandwich nanobeam increase by increasing the Winkler and Pasternak elastic constant. Also, increasing the nonlocal parameter at a constant length decreases the natural frequencies. By increasing the length to thickness ratio (L/h) of nanobeam, the nonlocal frequencies reduce.

Porosity-dependent asymmetric thermal buckling of inhomogeneous annular nanoplates resting on elastic substrate

  • Salari, Erfan;Ashoori, Alireza;Vanini, Seyed Ali Sadough
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.25-38
    • /
    • 2019
  • This research is aimed at studying the asymmetric thermal buckling of porous functionally graded (FG) annular nanoplates resting on an elastic substrate which are made of two different sets of porous distribution, based on nonlocal elasticity theory. Porosity-dependent properties of inhomogeneous nanoplates are supposed to vary through the thickness direction and are defined via a modified power law function in which the porosities with even and uneven type are approximated. In this model, three types of thermal loading, i.e., uniform temperature rise, linear temperature distribution and heat conduction across the thickness direction are considered. Based on Hamilton's principle and the adjacent equilibrium criterion, the stability equations of nanoporous annular plates on elastic substrate are obtained. Afterwards, an analytical solution procedure is established to achieve the critical buckling temperatures of annular nanoplates with porosities under different loading conditions. Detailed numerical studies are performed to demonstrate the influences of the porosity volume fraction, various thermal loading, material gradation, nonlocal parameter for higher modes, elastic substrate coefficients and geometrical dimensions on the critical buckling temperatures of a nanoporous annular plate. Also, it is discussed that because of present of thermal moment at the boundary conditions, porous nanoplate with simply supported boundary condition doesn't buckle.

Wave propagation in a generalized thermo elastic plate embedded in elastic medium

  • Ponnusamy, P.;Selvamani, R.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.13-26
    • /
    • 2012
  • In this paper, the wave propagation in a generalized thermo elastic plate embedded in an elastic medium (Winkler model) is studied based on the Lord-Schulman (LS) and Green-Lindsay (GL) generalized two dimensional theory of thermo elasticity. Two displacement potential functions are introduced to uncouple the equations of motion. The frequency equations that include the interaction between the plate and foundation are obtained by the traction free boundary conditions using the Bessel function solutions. The numerical calculations are carried out for the material Zinc and the computed non-dimensional frequency and attenuation coefficient are plotted as the dispersion curves for the plate with thermally insulated and isothermal boundaries. The wave characteristics are found to be more stable and realistic in the presence of thermal relaxation times and the foundation parameter. A comparison of the results for the case with no thermal effects shows well agreement with those by the membrane theory.

Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory

  • Abdulrazzaq, Mohammed Abdulraoof;Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.147-157
    • /
    • 2020
  • In the present research, thermo-elastic buckling of small scale functionally graded material (FGM) nano-size plates with clamped edge conditions rested on an elastic substrate exposed to uniformly, linearly and non-linearly temperature distributions has been investigated employing a secant function based refined theory. Material properties of the FGM nano-size plate have exponential gradation across the plate thickness. Using Hamilton's rule and non-local elasticity of Eringen, the non-local governing equations have been stablished in the context of refined four-unknown plate theory and then solved via an analytical method which captures clamped boundary conditions. Buckling results are provided to show the effects of different thermal loadings, non-locality, gradient index, shear deformation, aspect and length-to-thickness ratios on critical buckling temperature of clamped exponential graded nano-size plates.

Size-dependent thermal behaviors of axially traveling nanobeams based on a strain gradient theory

  • Li, Cheng
    • Structural Engineering and Mechanics
    • /
    • v.48 no.3
    • /
    • pp.415-434
    • /
    • 2013
  • This work is concerned with transverse vibrations of axially traveling nanobeams including strain gradient and thermal effects. The strain gradient elasticity theory and the temperature field are taken into consideration. A new higher-order differential equation of motion is derived from the variational principle and the corresponding higher-order non-classical boundary conditions including simple, clamped, cantilevered supports and their higher-order "offspring" are established. Effects of strain gradient nanoscale parameter, temperature change, shape parameter and axial traction on the natural frequencies are presented and discussed through some numerical examples. It is concluded that the factors mentioned above significantly influence the dynamic behaviors of an axially traveling nanobeam. In particular, the strain gradient effect tends to induce higher vibration frequencies as compared to an axially traveling macro beams based on the classical vibration theory without strain gradient effect.

Transient wave propagation in piezoelectric hollow spheres subjected to thermal shock and electric excitation

  • Dai, H.L.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.441-457
    • /
    • 2005
  • An analytical method is presented to solve the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere subjected to thermal shock and electric excitation. Exact expressions for the transient responses of displacements, stresses, electric displacement and electric potentials in the piezoelectric hollow sphere are obtained by means of Hankel transform, Laplace transform, and inverse transforms. Using Hermite non-linear interpolation method solves Volterra integral equation of the second kind involved in the exact expression, which is caused by interaction between thermo-elastic field and thermo-electric field. Thus, an analytical solution for the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere is obtained. Finally, some numerical results are carried out, and may be used as a reference to solve other transient coupled problems of thermo-electro-elasticity.

Stresses in FGM pressure tubes under non-uniform temperature distribution

  • Eraslan, Ahmet N.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.393-408
    • /
    • 2007
  • The effects of material nonhomogeneity and nonisothermal conditions on the stress response of pressurized tubes are assessed by virtue of a computational model. The modulus of elasticity, the Poisson's ratio, the yield strength, and the coefficient of thermal expansion, are assumed to vary nonlinearly in the tube. A logarithmic temperature distribution within the tube is proposed. Under these conditions, it is shown that the stress states and the magnitudes of response variables are affected significantly by both the material nonhomogeneity and the existence of the radial temperature gradient.

Special Issue for Biomedical Ultrasound: Towards Further Advances in Fundamentals and Applications by Comprehensive Reviews

  • Kim, Yong-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3E
    • /
    • pp.107-110
    • /
    • 2010
  • In this paper, the rationale and contents of the special issue of the Journal of the Acoustical Society of Korea regarding comprehensive reviews on past, present and future of biomedical ultrasound are described. Brief descriptions of invited articles are given, and efforts by all contributing authors are gratefully acknowledged.