Browse > Article
http://dx.doi.org/10.12989/anr.2019.7.2.077

Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams  

Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
Karimiasl, Mahsa (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
Civalek, Omer (Akdeniz University, Engineering Faculty, Civil Engineering Dept., Division of Mechanics)
Vinyas, Mahesh (Department of Mechanical Engineering, Nitte Meenakshi Institute of Technology)
Publication Information
Advances in nano research / v.7, no.2, 2019 , pp. 77-88 More about this Journal
Abstract
This paper infer the transient vibration of piezoelectric sandwich nanobeams, In present work, the flexoelectric effect on the mechanical properties of vibration piezoelectric sandwich nanobeam with different boundary conditions is investigated. According to the Nonlocal elasticity theory in nanostructures, the flexoelectricity is believed to be authentic for such size-dependent properties. The governing equations are derived by Hamilton's principle and boundary condition solved by Galerkin-based solution. This research develops a nonlocal flexoelectric sandwich nanobeam supported by Winkler-Pasternak foundation. The results of this work indicate that natural frequencies of a sandwich nanobeam increase by increasing the Winkler and Pasternak elastic constant. Also, increasing the nonlocal parameter at a constant length decreases the natural frequencies. By increasing the length to thickness ratio (L/h) of nanobeam, the nonlocal frequencies reduce.
Keywords
vibration; piezoelectric sandwich nanobeam; flexoelectricity; surface effect; nonlocal elasticity theory; thermal effect;
Citations & Related Records
Times Cited By KSCI : 19  (Citation Analysis)
연도 인용수 순위
1 Ansari, R. and Sahmani, S. (2011), "Bending behavior and buckling of nanobeams including surface stress effects to different beam theories", Int. J. Eng. Sci., 49, 1244-1255.   DOI
2 Ansari, R., Oskouie, M.F., Gholami, R. and Sadeghi, F. (2016), "Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory", Compos. Part B: Eng., 89, 316-327.   DOI
3 Arefi, M. and Zenkour, A.M. (2016), "Nonlocal electro-thermomechanical analysis of a sandwich nanoplate containing a kelvin-voigt viscoelastic nanoplate and two piezoelectric layers", Acta Mechanica, 228(2), 475-493.   DOI
4 Asemi, H.R., Asemi, S.R., Farajpour, A. and Mohammadi, M. (2015), "Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads", Physica E: Low-dimens. Syst. Nanostruct., 68, 112-122.   DOI
5 Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., Int. J., 5(4), 393-414.   DOI
6 Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081.   DOI
7 Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37.   DOI
8 Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162.
9 Karami, B., Janghorban, M. and Tounsi, A. (2018b), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264.   DOI
10 Wang, W., Li, P., Jin, F. and Wang, J. (2016b), "Vibration analysis of piezoelectric ceramic circular nanoplates considering surface and nonlocal effects", Compos. Struct., 140, 758-775.   DOI
11 Ke, L.-L. and Wang, Y.-S. (2012), "Thermoelectric-Mechanical Vibration of Piezoelectric Nanobeams Based on the Nonlocal Theory", Smart Mater. Struct., 121(1), 250-268.
12 Ke, L.L., Liu, C. and Wang, Y.S. (2015), "Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions", Physica E: Low-dimens. Syst. Nanostruct., 66, 93-106.   DOI
13 Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., Int. J., 64(4), 391-402.
14 Lee, H.L. and Chang, W.J. (2010), "Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory", J. Appl. Phys., 108(9), 093503.   DOI
15 Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92.   DOI
16 Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174.   DOI
17 Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Buckling and post-buckling of size- dependent piezoelectric Timoshenko nanobeams subject to thermo-electro-mechanical loadings", Int. J. Struct. Stabil. Dyn., 14(3), 1350067.   DOI
18 Yan, Z. and Jiang, L.Y. (2012), "Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and inplane constraints", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society, (p. rspa20120214).
19 Xu, M. (2006), "Free transverse vibrations of nano-to-micron scale beams", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 462(2074), pp. 2977-2995.   DOI
20 Yan, Z. and Jiang, L. (2011), "The Vibrational and Buckling Behaviors of Piezoelectric Nanobeams with Surface Effects", Nanotechnology, 22(1), 245-263.
21 Youcef, D.O., Kaci, A., Houari, M.S.A., Tounsi, A., Benzair, A. and Heireche, H. (2015), "On the bending and stability of nanowire using various HSDTs", Adv. Nano Res., Int. J., 3(4), 177-191.   DOI
22 Zhang, Z. and Jiang, L. (2014), "Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity", J. Appl. Phys., 116(13), 134308.   DOI
23 Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., Int. J., 26(2), 125-137.
24 Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55.
25 Castrucci, P. (2014), "Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices", Adv. Nano Res., Int. J., 2(1), 23-56.   DOI
26 Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A. A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., Int. J., 3(4), 193-206.   DOI
27 Liu, C., Ke, L.L., Wang, Y.S. and Yang, J. (2015), "Nonlinear vibration of nonlocal piezoelectric nanoplates", Int. J. Struct. Stabil. Dyn., 15(8), 1540013.   DOI
28 Daneshmehr, A., Rajabpoor, A. and Hadi, A. (2015), "Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories", Int. J. Eng. Sci., 95, 23-35.   DOI
29 Ebrahimi, F. and Barati, M.R. (2016a), "A nonlocal higher-order shear deformation beam theory for vibration analysis of sizedependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690.   DOI
30 Ebrahimi, F. and Barati, M.R. (2016b), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 24(11), 924-936.   DOI
31 Altabey, W.A. (2017), "An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS", Adv. Nano Res., Int. J., 5(4), 337-357.
32 Ebrahimi, F. and Barati, M.R. (2016c), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
33 Ebrahimi, F. and Barati, M.R. (2016d), "Buckling analysis of smart size-dependent higher order magneto-electro-thermoelastic functionally graded nanosize beams", J. Mech., 33(1), 23-33.   DOI
34 Ebrahimi, F. and Boreiry, M. (2015), "Investigating various surface effects on nonlocal vibrational behavior of nanobeams", Appl. Phys. A, 121(3), 1305-1316.   DOI
35 Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518.   DOI
36 Marani, R. and Perri, A.G. (2017), "An approach to model the temperature effects on IV characteristics of CNTFETs", Adv. Nano Res., Int. J., 5(1), 61-67.   DOI
37 Murmu, T. and Pradhan, S.C. (2009), "Small-scale effect on the vibration of nonuniform nan cantilever based on nonlocal elasticity theory", Physica E: Low-dimens. Syst. Nanostruct., 41(8), 1451-1456.   DOI
38 Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307.   DOI
39 Reddy, J.N. and El-Borgi, S. (2014), "Eringen's nonlocal theories of beams accounting for moderate rotations", Int. J. Eng. Sci., 82, 159-177.   DOI
40 Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511.   DOI
41 Stelson, K.A. (2018), "Academic fluid power research in the USA", Int. J. Hydromechatronics, 1(1), 126-152.
42 Tian, T., Nakano, M. and Li, W. (2018), Applications of shear thickening fluids: a review", Int. J. Hydromechatronics, 1(2), 238-257.   DOI
43 Tounsi, A., Benguediab, S., Adda, B., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11.   DOI
44 Elishakoff, I. and Soret, C. (2013), "A consistent set of nonlocal Bresse-Timoshenko equations for nanobeams with surface effects", J. Appl. Mech., 80(6), 061001.   DOI
45 Wang, K.F. and Wang, B.L. (2011), "vibration of nanoscale plates with surface energy via nonlocal elasticity", Physica E: Lowdimens. Syst. Nanostruct., 44(2), 448-453.   DOI
46 Wang, Y.Z., Li, F.M. and Kishimoto, K. (2016a), "Effects of Axial Load and Elastic Matrix on Flexural Wave Propagation in Nanotube with Nonlocal Timoshenko Beam Model", J. Vib. Acoust., 134(3), 031011.   DOI
47 Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016a), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182.   DOI
48 Ebrahimi, F., Shaghaghi, G.R. and Boreiry, M. (2016b), "An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes", Struct. Eng. Mech., Int. J., 57(1), 179-200.   DOI
49 Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., Int. J., 5(2), 179-192.
50 Ehyaei, J., Ebrahimi, F. and Salari, E. (2016), "Nonlocal vibration analysis of FG nano beams with different boundary conditions", Adv. Nano Res., Int. J., 4(2), 85-111.
51 Eringen, A. (1968), "Mechanics of micromorphic continua", In: (E. Kroner Ed.), Mechanics of Generalized Continua, Springer-Verlag, pp. 18-35.
52 Eringen, A. (1976), "Nonlocal micropolar field theory", In: Continuum Physics, (A.C. Eringen Ed.), Academic Press, New York, NY, USA.
53 Eringen, A. (2002), Nonlocal Continuum Field Theories, Springer, New York, NY, USA.
54 Eringen, A. (2006), "Nonlocal continuum mechanics based on distributions", Int. J. Eng. Sci., 44(3), 141-147.   DOI
55 Eringen, A. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248.   DOI
56 Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., Int. J., 5(2), 141-169.
57 Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Rational Mech. Anal., 57(4), 291-323.   DOI
58 Elmerabet, A.H., Heireche, H., Tounsi, A. and Semmah, A. (2017), "Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model", Adv. Nano Res., Int. J., 5(1), 1-12.
59 Fernandez-Saez, J., Zaera, R., Loya, J.A. and Reddy, J.N. (2016), "Bending of Euler-Bernoulli beams using Eringen's integral formulation: a paradox resolved", Int. J. Eng. Sci., 99, 107-116.   DOI
60 Gheshlaghi, B. and Hasheminejad, S. (2012), "Vibration analysis of piezoelectric nanowires with surface and small scale effects", Current Appl. Phys., 12(4), 1096-1099.   DOI
61 Hosseini, M., Jamalpoor, A. and Fath, A. (2016), "Surface effect on the biaxial buckling and free vibration of FGM nanoplate embedded in visco-Pasternak standard linear solid-type of foundation", Meccanica, 52(6), 1381-1396.   DOI
62 Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140, 374-383.   DOI
63 Jamalpoor, A., Ahmadi-Savadkoohi, A., Hossein, M. and Hosseini-Hashemi, S. (2016), "Free vibration and biaxial buckling analysis of double magneto-electro-elastic nanoplate-systems coupled by a visco Pasternak medium via nonlocal elasticity theory", Eur. J. Mech. / A Solids, 63, 84-98.   DOI
64 Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Post-buckling analysis of sheardeformable composite beams using a novel simple twounknown beam theory", Struct. Eng. Mech., Int. J., 65(5), 621-631.
65 Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018a), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110.