References
- Chen, W.Q. and Shioya, T. (2001), 'Piezothermoelastic behavior of a pyroelectric spherical shell', J. Thennal Stresses, 24, 105-120 https://doi.org/10.1080/01495730150500424
- Cinelli, G. (1965), 'An extension of the finite Hankel transform and application', Int. J. Engng. Sci., 3, 539-559 https://doi.org/10.1016/0020-7225(65)90034-0
- Ding, H.J., Wang, H.M. and Chen, W.O. (2003), 'On stress-focusing effect in a uniformly heated solid sphere', J. Appl. Mech., ASME, 70, 304-309 https://doi.org/10.1115/1.1544514
- Dunn, M.L. and Taya, M. (1994), 'Electroelastic field concentrations in and around inhomogeneties in piezoelectric solids', J. Appl. Mech., 61, 474-475 https://doi.org/10.1115/1.2901471
- Hata, T. (1991), 'Thermal shock in a hollow sphere caused by rapid uniform heating', J Appl. Mech., ASME, 58,64-69 https://doi.org/10.1115/1.2897180
- Hata, T. (1993), 'Stress-focusing effect in a uniformly heated transversely isotropic sphere', Int. J. Solids Struct., 30, 1419-1428 https://doi.org/10.1016/0020-7683(93)90069-J
- Hata, T. (1997), 'Stress-focusing effect due to an instantaneous concentrated heat source in a sphere', J. Thenn. Stresses, 20, 269-279 https://doi.org/10.1080/01495739708956102
- Hu, H.C. (1954), 'On the general theory of elasticity for a spherically isotropic medium', Acta Sci. Sin., 3, 247-260
- Kress, R. (1989), Linear Integral Equation (Applied Mathematical Sciences, Volume 82), Springer-Verlag World Publishing Corp
- Lekhnitskii, S.G. (1981), Theory of Elasticity of an Anisotropic Body, Mir Publishers, Moscow
- Love, A.E.H. (1927), A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, Cambridge
- Sinha, D.K. (1962), 'Note on the radial deformation of a piezoelectric, polarized spherical shell with a symmetrical temperature distribution', J. Acoust. Soc. Am., 34, 1073-1075 https://doi.org/10.1121/1.1918247
- Sternberg, E. and Chakravorty, J.G. (1959), 'Thermal shock in an elastic body with a spherical cavity', Q. Appl. Math., 17,205-218 https://doi.org/10.1090/qam/107424
- Wang, X. (2000), 'Dynamic thermostress-concentration effect in a spherically isotropic sphere', Acta Mech. Sin., 32,245-250 (in Chinese)
- Wang, X., Zhang, W. and Chan, J.B. (2001), 'Dynamic thermal stress in a transversely isotropic hollow sphere', J. Therm. Stresses, 24, 335-346 https://doi.org/10.1080/01495730151078135
Cited by
- Analytical solutions of stresses in functionally graded piezoelectric hollow structures vol.150, pp.15-16, 2010, https://doi.org/10.1016/j.ssc.2010.01.028
- Electromagnetoelastic behaviors of functionally graded piezoelectric solid cylinder and sphere vol.23, pp.1, 2007, https://doi.org/10.1007/s10409-006-0047-0
- Analytical and numerical modeling of resonant piezoelectric devices in China-A review vol.51, pp.12, 2008, https://doi.org/10.1007/s11433-008-0188-1
- Stress-focusing Effect in a Uniformly Heated Transversely Isotropic Piezoelectric Solid Sphere vol.20, pp.3, 2007, https://doi.org/10.1177/0892705707076719
- Exact solutions for functionally graded pressure vessels in a uniform magnetic field vol.43, pp.18-19, 2006, https://doi.org/10.1016/j.ijsolstr.2005.08.019
- Thermal stresses in an incompressible FGM spherical shell with temperature-dependent material properties vol.120, 2017, https://doi.org/10.1016/j.tws.2017.09.005
- Nonaxisymmetric vibrations of radially polarized hollow cylinders made of functionally gradient piezoelectric materials vol.24, pp.4-6, 2012, https://doi.org/10.1007/s00161-012-0239-8
- Exact Electromagnetothermoelastic Solution for a Transversely Isotropic Piezoelectric Hollow Sphere Subjected to Arbitrary Thermal Shock vol.102, pp.1, 2011, https://doi.org/10.1007/s10659-010-9263-8
- Electromagnetotransient stress and perturbation of magnetic field vector in transversely isotropic piezoelectric solid spheres vol.129, pp.1-3, 2006, https://doi.org/10.1016/j.mseb.2005.12.020
- Nonaxisymmetric electroelastic vibrations of a hollow sphere made of functionally gradient piezoelectric material vol.26, pp.6, 2014, https://doi.org/10.1007/s00161-014-0337-x
- Electromagnetoelastic Dynamic Response of Transversely Isotropic Piezoelectric Hollow Spheres in a Uniform Magnetic Field vol.74, pp.1, 2007, https://doi.org/10.1115/1.2178361
- Forced Axisymmetric Vibrations of an Electrically Excited Hollow Sphere Made of a Continuously Inhomogeneous Piezoceramic Material* vol.56, pp.6, 2005, https://doi.org/10.1007/s10778-021-01044-y