• Title/Summary/Keyword: thermal control design

Search Result 643, Processing Time 0.034 seconds

Conceptual Design of Multi-Functional Structure using Rectangular Grid-Stiffened Structure for Satellite (위성용 사각형 격자강화 구조의 다기능 구조체 개념설계)

  • Seo, Hyun-Suk;Jang, Tae-Seong;Rhee, Ju-Hun;Kim, Won-Seock;Hyun, Bum-Seok;Lim, Jae-Hyuk;Hwang, Do-Soon;Lee, Sang-Kon;Cho, Hee-Keun;Han, Eun-Soo;Kim, Im-Soo;Sim, Eun-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.526-534
    • /
    • 2011
  • The MFS (Mlti-Functional Structure) concept, which integrates the electronics, thermal control and structure into a single packaging system, has been developed and applied to reduce the volume and weight of the satellite. Therefore, this MFS can eliminate the bulky chassis/frames, cables and connectors of the electronic equipment. The main point of this traditional MFS is the replacement of the electrical chassis/frames with MCMs (Multi-Chip Modules) that require much costs and efforts for developing. This paper shows the new MFS concept that effectively saves the volume and weight. The structure including the thermal control and radiation shielding elements will be designed and manufactured as the rectangular grid-stiffened structure. The rectangular grid-stiffened structure is the modification of the iso-grid structure, and provides the enough spaces for putting the general PCBs without the chassis/frames.

Analysis on Insulation of Wind Environment and Greenhouse Cover Materials Insulation for Advanced Greenhouse Energy Design in Saemangeum Reclaimed Land (새만금 간척지 첨단온실 에너지 설계를 위한 풍환경 및 온실 피복재의 영향 분석)

  • Hyo-Jae Seo;Il-Hwan Seo;Deuk-ha Noh;Haksung Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.57-63
    • /
    • 2023
  • The external weather conditions including temperature and wind speed in the Saemangeum reclaimed land is different from that of the inland, affecting the internal environment of the greenhouse. Therefore, it is important to select an appropriate covering material considering the insulation effect according to the type and characteristics of the covering material considering the weather condition in the Saemangeum reclaimed land. A hexahedral insulation chamber was designed to evaluate the insulation efficiency of each glass-clad material in the outside weather condition in reclaimed land. In order to evaluate the insulation effect of each covering material, a radiator was installed and real-time power consumption was monitored. 16-mm PC (polycarbonate), 16-mm PMMA (polymethyl methacrylate), 4-mm greenhouse glass, and 16-mm double-layered glass were used as the covering materials of the chamber. In order to understand the effect of the external wind directions, the windward and downwind insulation properties were evaluated. As a result of comparing the thermal insulation effect of each greenhouse cover material to single-layer glass, the thermal insulation effect of double-layer glass was 16.9% higher, while PMMA and PC were 62.5% and 131.2% higher respectively. On average the wind speed on the windward side was 53.1% higher than that on the lee-wind side, and the temperature difference between the inside and outside of the chamber at the wind ward side was found to be 52.0% larger than that on the lee ward side. During the experiment period, the overall heating operation time for PC was 39.2% lower compared to other insulation materials. Showing highest energy efficiency, and compared to PC, single-layer glass power consumption was 37.4% higher.

Analysis on Temperature Distribution and Current-Carrying Capacity of GIL Filled with Fluoronitriles-CO2 Gas Mixture

  • Chen, Geng;Tu, Youping;Wang, Cong;Cheng, Yi;Jiang, Han;Zhou, Hongyang;Jin, Hua
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2402-2411
    • /
    • 2018
  • Fluoronitriles-$CO_2$ gas mixtures are promising alternatives to $SF_6$ in environmentally-friendly gas-insulated transmission lines (GILs). Insulating gas heat transfer characteristics are of major significance for the current-carrying capacity design and operational state monitoring of GILs. In this paper, a three-dimensional calculation model was established for a GIL using the thermal-fluid coupled finite element method. The calculated results showed close agreement with experimentally measured data. The temperature distribution of a GIL filled with the Fluoronitriles-$CO_2$ mixture was obtained and compared with those of GILs filled with $CO_2$ and $SF_6$. Furthermore, the effects of the mixture ratio of the component gases and the gas pressure on the temperature rise and current-carrying capacity of the GIL were analyzed. Results indicated that the heat transfer performance of the Fluoronitriles-$CO_2$ gas mixture was better than that of $CO_2$ but worse than that of $SF_6$. When compared with $SF_6$, use of the Fluoronitriles-$CO_2$ gas mixture caused a reduction in the GIL's current-carrying capacity. In addition, increasing the Fluoronitriles gas component ratio or increasing the pressure of the insulating gas mixture could improve the heat dissipation and current-carrying capacity of the GIL. These research results can be used to design environmentally-friendly GILs containing Fluoronitriles-$CO_2$ gas mixtures.

Effect of Latent Heat Material Placement on Inside Temperature Uniformity of Insulated Transfer Boxes (단열용기의 잠열재 배치에 따른 내부 온도 균일성에 대한 영향)

  • HyungYong Ji;Dong-Yeol Chung;Seuk Cheun Choi;Joeng-Yeol Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • An optimized design of the transportation insulated box must be considered to control the thermal damage in order to maintain the fresh condition for temperature-sensitive medicine and frozen food safety. The inside temperature of the insulated box is a natural convection enclosure state, thermal stratification naturally occurs as time passes in case of with outside heat load. The latent heat material (LHM) placement inside the box maintains the target temperature of the product for temperature fluctuations during transport, and LHM application is a common and efficient method. In this work, inside temperature stratification in an insulated box depending on the LHM pack position is numerically simulated and experimented. The insulated box is made up of vacuum insulation panel (VIP), and LHM modules are placed over six faces inside the box, with the same weight. The temperature curves for 72 hrs as experiment results clearly show the temperature stratification in the upper, middle, and lower at the LHM melting time region. However, the temperature stratification state is uniformly changed in accordance with the condition of the upper and lower placement weight of the LHM pack. And also, the temperature uniformity by changed placement weight of LHM has an effect on maintaining time for target air temperature inside the box. These results provide information on the optimized design of the insulated box with LHM.

Design of a CCM/DCM dual mode DC-DC Buck Converter with Capacitor Multiplier (커패시터 멀티플라이어를 갖는 CCM/DCM 이중모드 DC-DC 벅 컨버터의 설계)

  • Choi, Jin-Woong;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.21-26
    • /
    • 2016
  • This paper presents a step-down DC-DC buck converter with a CCM/DCM dual-mode function for the internal power stage of portable electronic device. The proposed converter that is operated with a high frequency of 1 MHz consists of a power stage and a control block. The power stage has a power MOS transistor, inductor, capacitor, and feedback resistors for the control loop. The control part has a pulse width modulation (PWM) block, error amplifier, ramp generator, and oscillator. In this paper, an external capacitor for compensation has been replaced with a multiplier equivalent CMOS circuit for area reduction of integrated circuits. In addition, the circuit includes protection block, such as over voltage protection (OVP), under voltage lock out (UVLO), and thermal shutdown (TSD) block. The proposed circuit was designed and verified using a $0.18{\mu}m$ CMOS process parameter by Cadence Spectra circuit design program. The SPICE simulation results showed a peak efficiency of 94.8 %, a ripple voltage of 3.29 mV ripple, and a 1.8 V output voltage with supply voltages ranging from 2.7 to 3.3 V.

Performance of Adaptive Maximum Torque Per Amp Control at Multiple Operating Points for Induction Motor Drives (유도전동기 드라이브에서의 단위전류당 최대토크적응 제어기의 다운전점에서의 성능 연구)

  • Kwon, Chun-Ki;Kong, Yong-Hae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.584-593
    • /
    • 2018
  • The highly efficient operation of induction motors has been studied in the past years. Among the many attempts made to obtain highly efficient operation, Maximum Torque Per Amp (MTPA) controls in induction motor drives were proposed. This method enables induction motor drives to operate very efficiently since it achieves the desired torque with the minimal stator current. This is because the alternate qd induction motor model (AQDM) is a highly accurate mathematical model to represent the dynamic characteristics of induction motors. However, it has been shown that the variation of the rotor resistance degrades the performance of the MTPA control significantly, thus leading to its failure to satisfy the maximum torque per amp condition. To take into consideration the mismatch between the actual value of the rotor resistance and its parameter value in the design of the control strategy, an adaptive MTPA control was proposed. In this work, this adaptive MTPA control is investigated in order to achieve the desired torque with the minimum stator current at multiple operating points. The experimental study showed that (i) the desired torque was accurately achieved even though there was a deviation of the order of 5% from the commanded torque value at a torque reference of 25 Nm (tracking performance), and (ii) the minimum stator current for the desired torque (maximum torque per amp condition) was consistently satisfied at multiple operating points, as the rotor temperature increased.

Aerodynamic control capability of a wing-flap in hypersonic, rarefied regime: Part II

  • Zuppardi, Gennaro;Vangone, Daniele
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.503-514
    • /
    • 2017
  • The attitude control of an aircraft is usually fulfilled by means of thrusters at high altitudes. Therefore, the possibility of using also aerodynamic surfaces would produce the advantage of reducing the amount of fuel for the thrusters to be loaded on board. For this purpose, Zuppardi already considered some aerodynamic problems linked to the use of a wing flap in a previous paper. A NACA 0010 airfoil with a trailing edge flap of 35% of the chord, in the range of angle of attack 0-40 deg and flap deflections up to 30 deg was investigated. Computer tests were carried out in hypersonic, rarefied flow by a direct simulation Monte Carlo code at the altitudes of 65 and 85 km of Earth Atmosphere. The present work continues this subject, considering the same airfoil and free stream conditions but two flap extensions of 45% and 25% of the chord and two flap deflections of 15 and 30 deg. The main purpose is to compare the influence of the flap dimension with that of the flap deflection. The present analysis is carried out in terms of: 1) percentage variation of the global aerodynamic coefficients with respect to the no-flap configuration, 2) increment of pressure and heat flux on the airfoil lower surface due to the Shock Wave-Shock Wave Interaction (SWSWI) with respect to the same quantities with no SWSWI or in no-flap configuration, 3) flap hinge moment. Issues 2) and 3) are important for the design of the mechanical and thermal protection system and of the flap actuator, respectively. Under the above mentioned test and geometrical conditions, the flap deflection is aerodynamically more effective than the flap extension, because it involves higher variation of the aerodynamic coefficients. However, tests verify that a smaller deflection angle involves the advantage of a smaller increment of pressure and heat flux on the airfoil lower surface, due to SWSWI, as well as a smaller hinge moment.

DEVELOPMENT OF A TWO-DIMENSIONAL THERMOHYDRAULIC HOT POOL MODEL AND ITS EFFECTS ON REACTIVITY FEEDBACK DURING A UTOP IN LIQUID METAL REACTORS

  • Lee, Yong-Bum;Jeong, Hae-Yong;Cho, Chung-Ho;Kwon, Young-Min;Ha, Kwi-Seok;Chang, Won-Pyo;Suk, Soo-Dong;Hahn, Do-Hee
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1053-1064
    • /
    • 2009
  • The existence of a large sodium pool in the KALIMER, a pool-type LMR developed by the Korea Atomic Energy Research Institute, plays an important role in reactor safety and operability because it determines the grace time for operators to cope with an abnormal event and to terminate a transient before reactor enters into an accident condition. A two-dimensional hot pool model has been developed and implemented in the SSC-K code, and has been successfully applied for the assessment of safety issues in the conceptual design of KALIMER and for the analysis of anticipated system transients. The other important models of the SSC-K code include a three-dimensional core thermal-hydraulic model, a reactivity model, a passive decay heat removal system model, and an intermediate heat transport system and steam generation system model. The capability of the developed two-dimensional hot pool model was evaluated with a comparison of the temperature distribution calculated with the CFX code. The predicted hot pool coolant temperature distributions obtained with the two-dimensional hot pool model agreed well with those predicted with the CFX code. Variations in the temperature distribution of the hot pool affect the reactivity feedback due to an expansion of the control rod drive line (CRDL) immersed in the pool. The existing CRDL reactivity model of the SSC-K code has been modified based on the detailed hot pool temperature distribution obtained with the two-dimensional pool model. An analysis of an unprotected transient over power with the modified reactivity model showed an improved negative reactivity feedback effect.

Forecasted Weather based Weather Data File Generation Techniques for Real-time Building Simulation (실시간 빌딩 시뮬레이션을 위한 예측 기상 기반의 기상 데이터 파일 작성 기법)

  • Kwak, Young-Hoon;Jeong, Yong-Woo;Han, Hey-Sim;Jang, Cheol-Yong;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.8-18
    • /
    • 2014
  • Building simulation is used in a variety of sectors. In its early years, building simulation was mainly used in the design phase of a building for basic functions. Recently, however, it has become increasingly important during the operating phase, for commissioning and facility management. Most building simulation tools are used to estimate the thermal environment and energy consumption performance, and hence, they require the inputting of hourly weather data. A building simulation used for prediction should take into account the use of standard weather data. Weather data, which is used as input for a building simulation, plays a crucial role in the prediction performance, and hence, the selection of appropriate weather data is considered highly important. The present study proposed a technique for generating real-time weather data files, as opposed to the standard weather data files, which are required for running the building simulation. The forecasted weather elements provided by the Korea Meteorological Administration (KMA), the elements produced by the calculations, those utilizing the built-in functions of Energy Plus, and those that use standard values are combined for hourly input. The real-time weather data files generated using the technique proposed in the present study have been validated to compare with measured data and simulated data via EnergyPlus. The results of the present study are expected to increase the prediction accuracy of building control simulation results in the future.

OPF with Environmental Constraints with Multi Shunt Dynamic Controllers using Decomposed Parallel GA: Application to the Algerian Network

  • Mahdad, B.;Bouktir, T.;Srairi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.55-65
    • /
    • 2009
  • Due to the rapid increase of electricity demand, consideration of environmental constraints in optimal power flow (OPF) problems is increasingly important. In Algeria, up to 90% of electricity is produced by thermal generators (vapor, gas). In order to keep the emission of gaseous pollutants like sulfur dioxide (SO2) and Nitrogen (NO2) under the admissible ecological limits, many conventional and global optimization methods have been proposed to study the trade-off relation between fuel cost and emissions. This paper presents an efficient decomposed Parallel GA to solve the multi-objective environmental/economic dispatch problem. At the decomposed stage the length of the original chromosome is reduced successively and adapted to the topology of the new partition. Two subproblems are proposed: the first subproblem is related to the active power planning to minimize the total fuel cost, and the second subproblem is a reactive power planning design based in practical rules to make fine corrections to the voltage deviation and reactive power violation using a specified number of shunt dynamic compensators named Static Var Compensators (SVC). To validate the robustness of the proposed approach, the algorithm proposed was tested on the Algerian 59-bus network test and compared with conventional methods and with global optimization methods (GA, FGA, and ACO). The results show that the approach proposed can converge to the near solution and obtain a competitive solution at a critical situation and within a reasonable time.