DOI QR코드

DOI QR Code

Analysis on Insulation of Wind Environment and Greenhouse Cover Materials Insulation for Advanced Greenhouse Energy Design in Saemangeum Reclaimed Land

새만금 간척지 첨단온실 에너지 설계를 위한 풍환경 및 온실 피복재의 영향 분석

  • Hyo-Jae Seo (Department of Rural Construction Engineering, College of Agriculture & Life Sciences, Jeonbuk National University) ;
  • Il-Hwan Seo (Department of Rural Construction Engineering, College of Agriculture & Life Sciences, Jeonbuk National University) ;
  • Deuk-ha Noh (Engineering Team, Kiban Co.) ;
  • Haksung Lee (Reclaimed Land Agriculture Research Team, National institute of Crop Science, RDA)
  • 서효재 (전북대학교 농업생명과학대학 지역건설공학과) ;
  • 서일환 (전북대학교 농업생명과학대학 지역건설공학과) ;
  • 노득하 (노루기반 온실사업팀) ;
  • 이학성 (국립식량과학원 간척지농업연구팀)
  • Received : 2022.12.29
  • Accepted : 2023.01.25
  • Published : 2023.01.31

Abstract

The external weather conditions including temperature and wind speed in the Saemangeum reclaimed land is different from that of the inland, affecting the internal environment of the greenhouse. Therefore, it is important to select an appropriate covering material considering the insulation effect according to the type and characteristics of the covering material considering the weather condition in the Saemangeum reclaimed land. A hexahedral insulation chamber was designed to evaluate the insulation efficiency of each glass-clad material in the outside weather condition in reclaimed land. In order to evaluate the insulation effect of each covering material, a radiator was installed and real-time power consumption was monitored. 16-mm PC (polycarbonate), 16-mm PMMA (polymethyl methacrylate), 4-mm greenhouse glass, and 16-mm double-layered glass were used as the covering materials of the chamber. In order to understand the effect of the external wind directions, the windward and downwind insulation properties were evaluated. As a result of comparing the thermal insulation effect of each greenhouse cover material to single-layer glass, the thermal insulation effect of double-layer glass was 16.9% higher, while PMMA and PC were 62.5% and 131.2% higher respectively. On average the wind speed on the windward side was 53.1% higher than that on the lee-wind side, and the temperature difference between the inside and outside of the chamber at the wind ward side was found to be 52.0% larger than that on the lee ward side. During the experiment period, the overall heating operation time for PC was 39.2% lower compared to other insulation materials. Showing highest energy efficiency, and compared to PC, single-layer glass power consumption was 37.4% higher.

본 연구에서는 새만금과 같은 간척지를 활용하여 대규모 첨단온실단지를 조성하는 경우 간척지의 환경적 특수성 중 높은 풍속에 따른 유리 단열재의 에너지 효율을 평가하였다. 현장에서 주로 사용되는 온실 단열재 중 4가지에 대한 평가 결과, 최대 37.4%의 에너지 차이를 보여, 온실 피복재의 선정이 중요함을 제시하였다. 이를 바탕으로 일반적인 내륙에서의 온실을 설계하는 것과 달리, 간척지에서는 내재해성 온실규격을 따라 시설을 설계하여야 하며, 에너지 소비량은 높아진 풍속과 재질을 고려하여 산정되어야 한다. 본 연구의 결과는 에너지 효율성을 온실 피복재의 종류와 풍속에 따라서 제시하고 있으며, 이는 대규모 첨단온실 조성 시 에너지 소비량을 예측하고, 이를 바탕으로 신재생에너지원을 포함하는 에너지 설계에 활용될 수 있다

Keywords

Acknowledgement

본 연구는 농촌진흥청 논이용밭농업 안정생산기술개발사업(PJ015586)의 연구지원을 받아 수행하였습니다.

References

  1. Cuce E., D. Harjunowibowo, and P.M. Cuce 2016, Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review. Renew Sustain Energy Rev 64:34-59. doi:10.1016/j.rser.2016.05.077
  2. Diop S., J.W. Lee, W.H. Na, and H.W. Lee 2012, Overall heat transfer coefficient measurement of covering materials with thermal screens for greenhouse using the hot box method. J Korean Soc Agric Eng 54:1-7. doi:10.5389/KSAE.2012.54.5.001
  3. Geoola F., Y. Kashti, A. Levi, and R. Brickman 2009, A study of the overall heat transfer coefficient of greenhouse cladding materials with thermal screens using the hot box method. Polymer Testing 28:470-474. doi:10.1016/j.polymertesting.2009.02.006
  4. Hwang Y.Y., J.W. Lee, and H.W. Lee 2013, Estimation of overall heat transfer coefficient for single layer covering in greenhouse. Protected Hort Plant Fac 22:108-115. (in Korean) doi:10.12791/KSBEC.2013.22.2.108
  5. Japan Protected Horticulture Association (JPHA) 1994, Handbook of protected horticulture association. Japan Protected Horticulture Association, Tokyo, Japan, pp 170-173.
  6. Kim H.K., Y.S. Ryou, Y.H. Kim, T.S. Lee, S.S. Oh, and Y.H. Kim 2021, Estimating the thermal properties of the cover and the floor in a plastic greenhouse. Energies 14:1970. doi:10.3390/en14071970
  7. Kim Y.B., S.Y. Lee, and B.R. Jeong 2009, Analysis of the insulation effectiveness of the thermal insulator by the installation methods. J Bio-Env Con 18:332-340. (in Korean)
  8. Kim Y.H., H.K. Kim, T.S. Lee, S.S Oh, and Y.S. Ryou 2020, Analysis on heat loss of single-span greenhouse using small-scaled wind tunnel. Protected Hort Plant Fac 29:73-79. (in Korean) doi:10.12791/KSBEC.2020.29.1.73
  9. Kim Y.H., S.W. Kang, Y. Paek, J.K. Jang, J.H. Sung, and Y.K. Kang 2018, Investigation and greenhouse heat loss based on areas and weather information. Protected Hort Plant Fac 27:64-70. (in Korean) doi:10.12791/KSBEC.2018.27.1.64
  10. Korea Rural Community Corporation (KRC) 2022, Korea Rural Community Corporation Agricultural Life Site Overview and Current Status. KRC, Naju, Korea.
  11. Lee H.W., S. Diop, and Y.S. Kim 2011, Variation of the overall heat transfer coefficient of plastic greenhouse covering material. J Bio-Env Con 20:72-77. (in Korean)
  12. Lee H.W., Y.S. Kim, S.Y. Sim, J.W. Lee, and S. Diop 2013, Estimation of heat insulation and light transmission performance according to covering methods of plastic greenhouses. Protected Hort Plant Fac 22:270-278. (in Korean) doi:10.12791/KSBEC.2013.22.3.270
  13. Nam S.W., and H.H. Shin 2017, Analysis on the characteristics of ventilation and cooling for greenhouses constructed in reclaimed lands. Protected Hort Plant Fac 26:181-187. (in Korean) doi:10.12791/KSBEC.2017.26.3.181
  14. Ogunlowo Q.O., T.D. Akpenpuun, W.H. Na, A. Rabui, M.A. Adesanya, K.S. Addae, H.T. Kim, and H.W. Lee 2021, Analysis of heat and mass distribution in a single- and multispan greenhouse microclimate. Agriculture 11:891. doi:10.3390/agriculture11090891
  15. Rasheed A., J.W. Lee, and H.W. Lee 2018, Development and optimization of a building energy simulation model to study the effect of greenhouse design parameters. Energies 11:2001. doi:10.3390/en11082001
  16. Rural Development Administration (RDA) 2014, Development of overall heat transfer coefficient measurement system for covering and thermal insulation materials of greenhouse. RDA, Jeonju, Korea. (in Korean)
  17. Rural Development Administration (RDA) 2018, Development of heating energy saving multi-layer thermal screen system in multi span greenhouse. RDA, Jeonju, Korea.
  18. Rural Development Administration (RDA) 2021, Agricultural and livestock income data collection for agricultural management improvement (2020). RDA, Jeonju, Korea. (in Korean)
  19. Shen Y., R. Wei, and L. Xu 2018, Energy consumption prediction of a greenhouse and optimization of daily average temperature. Energies 11:65. doi:10.3390/en11010065
  20. Statistics Korea 2022, http://www.kosis.go.kr. Accessed 12 December 2022.
  21. Vadiee A., and V. Martin 2014, Energy management strategies for commercial greenhouses. Appl Energy 114:880-888. doi:10.1016/j.apenergy.2013.08.089
  22. Zhang Y., L. Gauthier, D. de Halleux, B. Dansereau, and A. Gosselin 1996, Effect of covering materials on energy consumption and greenhouse microclimate. Agric For Meteorol 82:227-244. doi:10.1016/0168-1923(96)02332-5