DOI QR코드

DOI QR Code

Effect of Latent Heat Material Placement on Inside Temperature Uniformity of Insulated Transfer Boxes

단열용기의 잠열재 배치에 따른 내부 온도 균일성에 대한 영향

  • HyungYong Ji (Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology) ;
  • Dong-Yeol Chung (Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology) ;
  • Seuk Cheun Choi (Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology) ;
  • Joeng-Yeol Kim (Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology)
  • 지형용 (한국생산기술연구원 청정기술연구소) ;
  • 정동열 (한국생산기술연구원 청정기술연구소) ;
  • 최석천 (한국생산기술연구원 청정기술연구소) ;
  • 김정열 (한국생산기술연구원 청정기술연구소)
  • Received : 2023.03.17
  • Accepted : 2023.04.05
  • Published : 2023.04.30

Abstract

An optimized design of the transportation insulated box must be considered to control the thermal damage in order to maintain the fresh condition for temperature-sensitive medicine and frozen food safety. The inside temperature of the insulated box is a natural convection enclosure state, thermal stratification naturally occurs as time passes in case of with outside heat load. The latent heat material (LHM) placement inside the box maintains the target temperature of the product for temperature fluctuations during transport, and LHM application is a common and efficient method. In this work, inside temperature stratification in an insulated box depending on the LHM pack position is numerically simulated and experimented. The insulated box is made up of vacuum insulation panel (VIP), and LHM modules are placed over six faces inside the box, with the same weight. The temperature curves for 72 hrs as experiment results clearly show the temperature stratification in the upper, middle, and lower at the LHM melting time region. However, the temperature stratification state is uniformly changed in accordance with the condition of the upper and lower placement weight of the LHM pack. And also, the temperature uniformity by changed placement weight of LHM has an effect on maintaining time for target air temperature inside the box. These results provide information on the optimized design of the insulated box with LHM.

본 연구에서는 저온물류 시스템의 단열용기의 온도유지 성능에 대하여 5℃급 저온 LHM을 배치하였을 때 배치구성 조건에 따른 온도특성을 확인하였다. LHM을 단열용기 내부에 배치하였을 때 6면과 5면에 상/하부 배치 비중에 차이를 두고 외기부하에 따른 내부 공기 온도균일도 및 목표 온도 유지시간을 분석하였다. 단열용기 내부 공기는 상부의 상승온도와 이때 발생하는 밀도차에 의한 공기 대류현상이 온도 성층화를 발생시키고, 균일도를 확보하기 위해 LHM의 상부 배치 비중이 하부보다 컸을 때 균일성이 높고 유지 시간이 오래 지속되는 것을 확인하였다. 다만, 상부 배치 비중을 높이기 위해 하부 배치를 제외한 조건에서 높은 균일성을 보이지만 짧은 유지 시간으로 보여 적정조건으로 알맞지 않다. 결과적으로 단열용기의 단열재 대칭구성과 LHM의 동일한 중량을 배치하여 보냉용기를 제작할 경우, LHM의 전면 배치를 바탕으로 하부에 비해 상부 배치 비중을 늘렸을 때 내부 공기 온도의 분포 균일도와 유지시간 성능을 높이는데 효율적인 방안이라고 판단된다. 저온물류 보냉용기 성능분석에 있어, 본 연구를 기반으로 다른 조건의 상변화 온도와 잠열량을 갖는 다양한 저온영역대의 LHM을 적용한 수치해석을 수행하여 성능 예측 결과를 확보할 수 있고 온도 균일도를 위한 단열 및 잠열 복합 구성 이송 용기의 최적 설계조건 수립에 기여할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 청정생산기반산업공생기술개발사업 "친환경 환경부하 저감형 단열재를 적용한 냉장·냉동용 단열포장용기 개발"의 지원으로 수행되었음.(No. 20015687)

References

  1. Sha, Y., Hua, W., Cao, H. and Zhang, X., 2022. properties and encapsulation forms of phase change material and various types of cold storage box for cold chain logistics: A review, Journal of Energy Storage, 55(1): 105426. 
  2. Faraj, K., Khaled, M., Garaj, J., Hachem, F., and Castelain, C. 2020. Phase change material thermal energy storage systems for cooling applications in buildings: A Review, Renewable and Sustainable Energy Reviews, 119(3): 109579. 
  3. Korakot, C., Kim, S.Y., Shin, Y.J., Jung, H.M., and Park, J.M. 2022. Measurement of delivery service environment for cold chain eps packaging system of fresh food, Korean Journal of Packaging Science and Technology, 28(1): 67-73.  https://doi.org/10.20909/kopast.2022.28.1.67
  4. Yoo. S., Kwon, S. and Park, S., 2019. Status of Packaging Materials for Frozen Foods and Analysis of Temperature Changes inside Packaging Materials during Frozen Process, Korean journal of packaging science and technology, 25(1): 11-16.  https://doi.org/10.20909/kopast.2019.25.1.11
  5. Leungtongkum, T., Flick, D., Hoang, H.M., Steven, D., Delahaye, A. and Laguerre, O. 2022. Insulated box and refrigerated equipment with PCM for food preservation: State of the art, Journal of Food Engineering, 317(3): 110874. 
  6. Qi, T., Ji, J., Zhang, X., Liu, L., Xu, X., Ma, K., and Gao, Y. 2022. Research progress of cold chain transport technology for storage fruits and vegetables, Journal of Energy Storage, 56(10): 105958. 
  7. Du, J., Niw, B., Zhan, Y., Du, Z., Wang and I., Ding, Y., 2022. Cooling performance of a thermal energy storage-based portable box for cold chain applications, Journal of Energy Storage 28(4): 101238. 
  8. Laguerrea, O., Ben Aissa, M.F. and Flick, D. 2008. Methodology of temperature prediction in an insulated container equipped with PCM, International Journal of Refrigeration, 31(6): 1063-1072.  https://doi.org/10.1016/j.ijrefrig.2007.12.008
  9. Jevnikar, S. and Siddiqui, K., 2019. Investigation of the influence of heat source orientation on the transient flow behavior during PCM melting using particle image velocimetry, Journal of Energy Storage, 25(10): 100825. 
  10. Berdja, M., Hamid, A. and Sari, O. 2019. Characteristics and thickness effect of phase change material and frost on heat transfer and thermal performance of conventional refrigerator: Theoretical and experimental investigation, International Journal of Refrigeration, 97(1): 108-123.  https://doi.org/10.1016/j.ijrefrig.2018.10.003
  11. Kozak, Y., Farid, M. and Ziskind, G. 2017. Experimental and comprehensive theoretical study of cold storage packages containing PCM, Applied Thermal Engineering, 115(25): 899-912.  https://doi.org/10.1016/j.applthermaleng.2016.12.127
  12. Mao, S., Kan, A. and Wang, N. 2020. Numerical analysis and experimental investigation on thermal bridge effect of vacuum insulation panel, Applied Thermal Engineering, 169(25): 114980. 
  13. Nie, B., Chen, J., Du, Z., Li, T., Zhang, T., Cong, L., Zouu, B. and Ding, Y. 2021. Thermal performance enhancement of a phase change material (PCM) based portable box for cold chain applications, Journal of Energy Storage, 40(8): 102707. 
  14. Xiaofeng, X. and Xuelai, Z. 2021. Simulation and experimental investigation of a multi-temperature insulation box with phase change materials for cold storage, Journal of Food Engineering, 292(4): 110286. 
  15. Li, C., Li, Y. and He, Y. L. 2023. Optimization of super water-retention phase change gels for cold energy storage in cold chain transportation, Journal of Energy Storage, 61(5): 106719. 
  16. Calati, M., Hooman, K. and Mancin, S. 2022. Thermal storage based on phase change materials (PCMs) for refrigerated transport and distribution applications along the cold chain, 16(11): 100224. https://doi.org/10.1016/j.ijft.2022.100224