• Title/Summary/Keyword: thermal chemical vapor deposition

Search Result 470, Processing Time 0.025 seconds

Low temperature deposition of carbon nanofilaments using vacuum-sublimated $Fe(CO)_5$ catalyst with thermal chemical vapor deposition

  • Kim, Nam-Seok;Kim, Kwang-Duk;Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.1
    • /
    • pp.18-22
    • /
    • 2007
  • Carbon nanofilaments were deposited on silicon oxide substrate by thermal chemical vapor deposition method. We used $Fe(CO)_5$ as the catalyst for the carbon nanofilaments formation. Around $800^{\circ}C$ substrate temperature, the formation density of carbon nanofilaments could be enhanced by the vacuum sublimation technique of $Fe(CO)_5$, compared with the conventional spin coating technique. Finally, we could achieve the low temperature, as low as $350^{\circ}C$, formation of carbon nanofilaments using the sublimated Fe-complex nanograins with thermal chemical vapor deposition. Detailed morphologies and characteristics of the carbon nanofilaments were investigated. Based on these results, the role of the vacuum sublimation technique for the low temperature deposition of carbon nanofilaments was discussed.

The geometry change of carbon nanofilaments by SF6 incorporation in a thermal chemical vapor deposition system

  • Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.119-123
    • /
    • 2011
  • Carbon nanotilaments (CNFs) could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and$H_2$ as source gases under thermal chemical vapor deposition system. By the incorporation of $SF_6$ as a cyclic modulation manner, the geometries of carbon coils-related materials, such as nano-sized coil and wave-like nano-sized coil could be observed on the substrate. The characteristics (formation density and morphology) of as-grown CNFs with or without $SF_6$ incorporation were investigated. Diameter size reduction for the individual CNFs-related shape and the enhancement of the formation density of CNFs-related material could be achieved by the incorporation of $SF_6$ as a cyclic modulation manner. The cause for these results was discussed in association with the slightly increased etching ability by $SF_6$ addition and the sulfur role in SF 6 for the geometry change.

Thermal Decomposition of Tetrakis(ethylmethylamido) Titanium for Chemical Vapor Deposition of Titanium Nitride

  • Kim, Seong-Jae;Kim, Bo-Hye;Woo, Hee-Gweon;Kim, Su-Kyung;Kim, Do-Heyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.219-223
    • /
    • 2006
  • The thermal decomposition of tetrakis(ethylmethylamido) titanium (TEMAT) has been investigated in Ar and $H_2$ gas atmospheres at gas temperatures of 100-400 ${^{\circ}C}$ by using Fourier Transform infrared spectroscopy (FTIR) as a fundamental study for the chemical vapor deposition (CVD) of titanium nitride (TiN) thin film. The activation energy for the decomposition of TEMAT was estimated to be 10.92 kcal/mol and the reaction order was determined to be the first order. The decomposition behavior of TEMAT was affected by ambient gases. TEMAT was decomposed into the intermediate forms of imine (C=N) compounds in Ar and $H_2$ atmosphere, but additional nitrile (RC$\equiv$N) compound was observed only in $H_2$ atmosphere. The decomposition rate of TEMAT under $H_2$ atmosphere was slower than that in Ar atmosphere, which resulted in the extension of the regime of the surface reaction control in the CVD TiN process.

Various Shape of Carbon Layer on Ga2O3 Thin Film by Controlling Methane Fraction in Radio Frequency Plasma Chemical Vapor Deposition (Ga2O3박막 상에서의 RF 플라즈마 화학기상증착법의 메테인 분율 조절에 의한 탄소층의 다양한 형상 제어 연구)

  • Seo, Ji-Yeon;Shin, Yun-Ji;Jeong, Seong-Min;Kim, Tae-Gyu;Bae, Si-Young
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, we controlled the shape of a carbon layer on gallium oxide templates. Gallium oxide layers were deposited on sapphire substrates using mist chemical vapor deposition. Subsequently, carbon layers were formed using radio frequency plasma chemical vapor deposition. Various shapes of carbon structures appeared according to the fraction of methane gas, used as a precursor. As methane gas concentration was adjusted from 1 to 100%, The shapes of carbon structures varied to diamonds, nanowalls, and spheres. The growth of carbon isotope structures on Ga2O3 templates will give rise to improving the electrical and thermal properties in the next-generation electronic applications.

Effect of Torch Speed and Solid Layer Thickness on Heat Transfer and Particle Deposition During modified Chemical Vapor Deposition Process (수정된 화학증착과정에서 토치이송과 고체층이 열전달과 입자부착에 미치는 영향)

  • 박경순;최만수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1301-1309
    • /
    • 1994
  • A study of heat transfer and thermophoretic particle deposition has been carried out for the Modified Chemical Vapor Deposition(MCVD) process. A new concept utilizing two torches is suggested to simulate the heating effects from repeated traversing torches. Calculation results for the wall temperatures and deposition efficiency are in good agreement with experimental data. The effects of variable properties are included and heat flux boundary condition is used to simulate the moving torch heating. A conjugate heat transfer which includes heat conduction through solid layer and heat teansfer in a gas in a tube is analyzed. Of particular interests are the effects of torch speeds and solid layer thicknesses on the deposition efficiency, rate and the tapered entry length.

Deposition Behaviors and Electrical Properties of Sb-doped $SnO_2$ Films by Plasma Enhanced Chemical Vapor Deposition (PECVD법에 의해 제조된 Sb-doped $SnO_2$ 박막의 증착거동 및 전기적 특성)

  • 김근수;서지윤;이희영;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.194-200
    • /
    • 2000
  • Sb-doped tin oxide films were deposited on Corning glass 1737 substrate by plasma enhanced chemical vapor deposition(PECVD) technique using a gas mixture of SnCl4/SbCl5/O2/Ar. The deposition behaviors of tin oxide films by PECVD were compared with those by thermal CVD, and effects of deposition temperature, r.f. power and Sb doping on the electrical properties of tin oxide films were investigated. PECVD technique largely increased the deposition rate and smoothed the surface of tin oxide films compared with thermal CVD. Electrical resistivity decreased with doping of Sb due to the increase of carrier concentration. However, large doping of Sb diminished carrier concentration and mobility due to the decrease of crystallinity, which resulted in the increase of electrical resistivity. As the deposition temperature and r.f. power increased, Cl content in the film decreased.

  • PDF

Creation of Diamond/Molybdenum Composite Coating in Open Air

  • Ando, Yasutaka;Tobe, Shogo;Tahara, Hirokazu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1313-1314
    • /
    • 2006
  • For improvement of wear resistance property of atmospheric thermal plasma sprayed molybdenum (Mo) coating, diamond deposition on the atmospheric plasma sprayed molybdenum coating by the combustion flame chemical vapor deposition (CFCVD) has been operated. In this study, to diminish the thermal damage of the substrate during operation, a thermal insulator was equipped between substrate and water-cooled substrate holder. Consequently, diamond particles could be created on the Mo coating without fracture and peeling off. From these results, it was found that this process had a high potential in order to improve wear resistance of thermal sprayed coating.

  • PDF

Effects of Inner Jet Injection on Particle Deposition in the Annular Modified Chemical Vapor Deposition Process Using Concentric Tubes (환상형원관을 사용하는 수정된 화학증착(MCVD)방법에서 내부 제트분사가 입자부착에 미치는 영향)

  • 최만수;박경순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.212-222
    • /
    • 1994
  • In the annular Modified Chemical Vapor Deposition process using two concentric tubes, the inner tube is heated to maintain high temperature gradients to have high thermophoretic force which can increase particle deposition efficiency. However, higher axial velocity in a narrow gap between inner and outer tubes can result in a longer tapered entry length. In the present paper, a new concept using an annular jet from the inner tube is presented and shown to significantly reduce the tapered entry length with maintaining high efficiency. Effects of a jet injection on heat transfer, fluid flow and particle deposition have been studied. Of particular interests are the effects of jet velocity, jet location and temperature on the deposition efficiency and tapered length . Torch heating effects from both the previous and present passes are included and the effect of surface radiation between inner and outer tubes is also considered.

Numerical study on heat transfer and densification for SiC composites during thermal gradient chemical vapour infiltration process

  • Ramadan, Zaher;Im, Ik-Tae
    • Carbon letters
    • /
    • v.25
    • /
    • pp.25-32
    • /
    • 2018
  • In this study, a thermal-gradient chemical vapor infiltration (TG-CVI) process was numerically studied in order to enhance the deposition uniformity within the preform. The computational fluid dynamics technique was used to solve the governing equations for heat transfer and gas flow during the TG-CVI process for two- and three-dimensional (2-D and 3-D) models. The temperature profiles in the 2-D and 3-D models showed good agreement with each other and with the experimental results. The densification process was investigated in a 2-D axisymmetric model. Computation results showed the distribution of the SiC deposition rate within the preform. The results also showed that using two-zone heater gave better deposition uniformity.