DOI QR코드

DOI QR Code

Numerical study on heat transfer and densification for SiC composites during thermal gradient chemical vapour infiltration process

  • Ramadan, Zaher (Department of Mechanical Design Engineering, Graduate School, Chonbuk National University) ;
  • Im, Ik-Tae (Department of Mechanical Design Engineering, College of Engineering, and Design Center for Eco-Friend Machine Parts, Chonbuk National University)
  • Received : 2017.01.14
  • Accepted : 2017.09.24
  • Published : 2018.01.31

Abstract

In this study, a thermal-gradient chemical vapor infiltration (TG-CVI) process was numerically studied in order to enhance the deposition uniformity within the preform. The computational fluid dynamics technique was used to solve the governing equations for heat transfer and gas flow during the TG-CVI process for two- and three-dimensional (2-D and 3-D) models. The temperature profiles in the 2-D and 3-D models showed good agreement with each other and with the experimental results. The densification process was investigated in a 2-D axisymmetric model. Computation results showed the distribution of the SiC deposition rate within the preform. The results also showed that using two-zone heater gave better deposition uniformity.

Keywords

References

  1. Lehman RL, El-Rahaiby SK, Wachtman JB, Jr. Handbook on Continuous Fiber-Reinforced Ceramic Matrix Composites, Defense Technical Information Center Document, ADA310820 (1995).
  2. Mazdiyasni KS. Fiber Reinforced Ceramic Composites: Materials, Processing And Technology, Noyes, Park Ridge (1990).
  3. Choy K. Chemical vapour deposition of coatings. Prog Mater Sci, 48, 57 (2003). https://doi.org/10.1016/s0079-6425(01)00009-3.
  4. Vignoles GL. Chemical Vapor Deposition/Infiltration Processes For Ceramic Composites. In: Boisse P, ed., Advances in Composites Manufacturing and Process Design, Woodhead Publishing, Cambridge, 147 (2015).
  5. Xu Y, Zhang L. Three-dimensional carbon/silicon carbide composites prepared by chemical vapor infiltration. J Am Ceram Soc, 80, 1897 (2005). https://doi.org/10.1111/j.1151-2916.1997.tb03069.x.
  6. Besmann TM, Stinton DP, Lowden RA. Overview of Chemical Vapor Infiltration, Oak Ridge National Laboratory, Oak Ridge, 1993.
  7. Zhang W, Huttinger KJ. Chemical vapor infiltration of carbon-revised: Part I: model simulations. Carbon, 39, 1013 (2001). https://doi.org/10.1016/s0008-6223(00)00214-1.
  8. Hu Z, Huttinger KJ. Chemical vapor infiltration of carbon-revised: Part II: experimental results. Carbon, 39, 1023 (2001). https://doi.org/10.1016/s0008-6223(00)00215-3.
  9. Zhang WG, Huttinger KJ. Densification of a 2D carbon fiber preform by isothermal, isobaric CVI: kinetics and carbon microstructure. Carbon, 41, 2325 (2003). https://doi.org/10.1016/s0008- 6223(03)00284-7.
  10. Reuge N, Vignoles GL. Modeling of isobaric-isothermal chemical vapor infiltration: effects of reactor control parameters on a densification. J Mate Process Technol, 166, 15 (2005). https://doi.org/10.1016/j.jmatprotec.2004.07.064.
  11. Chung GY, McCoy BJ, Smith JM, Cagliostro DE, Carswell M. Chemical vapor infiltration: modelling solid matrix deposition in ceramic-ceramic composites. Chem Eng Sci, 46, 723 (1991). https://doi.org/10.1016/0009-2509(91)80178-2.
  12. Fedou R, Langlais F, Naslain R. A model for the isothermal isobaric chemical vapor infiltration (CVI) in a straight cylindrical pore: application to the CVI of SiC. J Mater Synth Process (USA), 1, 61 (1993).
  13. Middleman S. The interaction of chemical kinetics and diffusion in the dynamics of chemical vapor infiltration. J Mate Res, 4, 1515 (1989). https://doi.org/10.1557/jmr.1989.1515.
  14. Tang ZH, Qu DN, Xiong J, Zou ZQ. Effects of infiltration conditions on the densification behavior of carbon/carbon composites prepared by a directional-flow thermal gradient CVI process. Carbon, 41, 2703, (2003). https://doi.org/10.1016/s0008-6223(03)00374-9.
  15. Golecki I, Morris RC, Narasimhan D, Clements N. Rapid densification of porous carbon-carbon composites by thermal-gradient chemical vapor infiltration. Appl Phys Lett, 66, 2334 (1995). https://doi.org/10.1063/1.113974.
  16. Probst KJ, Besmann TM, Stinton DP, Lowden RA, Anderson TJ, Starr TL. Recent advances in forced-flow, thermal-gradient CVI for refractory composites. Surf Coat Technol, 120-121, 250 (1999). https://doi.org/10.1016/s0257-8972(99)00459-4.
  17. Naslain RR, Pailler R, Bourrat X, Bertrand S, Heurtevent F, Dupel P, Lamouroux F. Synthesis of highly tailored ceramic matrix composites by pressure-pulsed CVI. Solid State Ionics, 141-142, 541 (2001). https://doi.org/10.1016/s0167-2738(01)00743-3.
  18. Golecki I, Morris RC, Narasimhan D. Method of rapidly densifying a porous structure. US Patent 5348774 A (1994).
  19. Gupta D, Evans JW. A mathematical model for chemical vapor infiltration with microwave heating and external cooling. J Mater Res, 6, 810 (1991). https://doi.org/10.1557/jmr.1991.0810.
  20. Morell JI, Economou DJ, Amundson NR. Chemical vapor infiltration of SiC with microwave heating. J Mater Res, 8, 1057 (1993). https://doi.org/10.1557/jmr.1993.1057.
  21. Devlin DJ, Barbero RS, Siebein KN. Radio Frequency Assisted Chemical Vapor Infiltration, Los Alamos National Laboratory, Santa Fe, 1996.
  22. Leutard D, Vignoles GL, Lamouroux F, Bernard B. Monitoring density and temperature in C/C composites processing by CVI with induction heating. J Mater Synth Process, 9, 259 (2001). https://doi.org/10.1023/a:1015251518333.
  23. Stinton DP, Besmann TM, Lowden RA. Advanced ceramics by chemical vapor deposition techniques. Am Ceram Soc Bull, 67, 350 (1988).
  24. Bansal NP, Boccaccini AR. Ceramics and composites processing methods, John Wiley & Sons, Hoboken (2012).
  25. Jensen KF. Fundamentals of Chemical Vapour Deposition. In: Hitchman ML, Jensen KF, eds. Chemical Vapour Deposition: Principles and Applications, Academic Press, New York, 31 (1993).
  26. Fiveland WA. Three-dimensional radiative heat-transfer solutions by the discrete-ordinates method. J Thermophys Heat Transfer, 2, 309 (1988). https://doi.org/10.2514/3.105.
  27. Beckermann C, Ramadhyani S, Viskanta R. Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure. J Heat Transfer, 109, 363 (1987). https://doi.org/10.1115/1.3248089.
  28. Bird RB, Stewart WE. Lightfoot Transport Phenomena, John Wiley & Sons, New York, 647 (1960).
  29. Zhu Y, Schnack E. Numerical modeling chemical vapor infiltration of SiC composites. J Chem, 2013, 836187 (2013). https://doi.org/10.1155/2013/836187.
  30. Kulik VI, Kulik AV, Ramm MS, Nilov AS, Bogdanov MV. Twodimensional model of conjugate heat and mass transport in the isothermal chemical vapour infiltration of 3D-preform by SiC matrix. Mater Sci Forum, 483-485, 245 (2005). https://doi.org/10.4028/ www.scientific.net/MSF.483-485.245.
  31. Kulik VI, Kulik AV, Ramm MS, Makarov YN. Modeling of SiCmatrix composite formation by isothermal chemical vapor infiltration. J Cryst Growth, 266, 333 (2004). https://doi.org/10.1016/j. jcrysgro.2004.02.063.