• Title/Summary/Keyword: thermal

Search Result 33,609, Processing Time 0.054 seconds

Analysis of Thermal Comfort Factor′s Distribution in Convective Heating Space (대류난방공간에서 온열쾌적조건의 분포상태 분석에 관한 연구)

  • 공성훈
    • Journal of the Korean housing association
    • /
    • v.6 no.1
    • /
    • pp.31-37
    • /
    • 1995
  • The purpose of this study is to analyse the distribution of thermal sensation response and thermal environment condition in convective heating space. The contents of this study are as follows: 1)the spatial distributions of thermal conditions are measured 2)the thermal sensation vote of residents is taken in order to investigate the relation between thermal condition and human thermal sensation in sedentary condition 3)to analyse the distribution of subject's thermal sensation vote and thermal environment condition by two methods-regression method and graph method.

  • PDF

The Correlation of Satellite Thermal Mathematical Model using Results of Thermal Vacuum Test on Structure-Thermal Model (저궤도 인공위성 열-구조 모델 열진공시험 결과를 활용한 열모델 보정)

  • Lee, Jang-Joon;Kim, Hui-Kyung;Hyun, Bum-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.916-922
    • /
    • 2009
  • Because thermal design of satellite carrying out mission in space is performed by thermal analysis result using thermal mathematical model, accuracy of thermal mathematical model is important and it can be improved by model correlation. Correlation steps of satellite thermal math model are composed of modeling of satellite configuration placed in thermal vacuum chamber, verification of correspondence between thermal math model and real satellite configuration, and adjustment of modeling parameters from major part to minor part etc. In this study, correlation success criteria was established and correlation for satellite thermal math model was performed using result of thermal vacuum test of satellite structure-thermal model to meet the success criteria. The overall results satisfied the criteria and this correlated thermal model was applied for detailed thermal design of satellite.

Measurement of thermal properties by TPS-technique and thermal network analysis (TPS를 통한 열물성치 획득 및 네트워크모델을 이용한 열해석)

  • Yun, Tae-Sup;Kim, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.263-268
    • /
    • 2010
  • Thermal characterization of geomaterials has significant implication on the geothermal energy, disposal of nuclear wastes, geological sequestration of carbon dioxides and recovery of hydrocarbon resources. Heat transfer in multiphase materials is dominated by the thermal conductivity of consisting components, porosity, degree of saturation and overburden pressure, which have been investigated by the empirical correlation at macro-scale. The thermal measurement by Transient Plane Source (TPS) and associated algorithm for interpretation of thermal behavior in geomaterials corroborate the robustness of sensing techniques. The method simultaneously provides thermal conductivity, diffusivity and volumetric heat capacity. The newly introduced thermal network model enables estimating thermal conductivity of geomaterials subjected to the effective stress, which has not been evaluated using previous thermal models. The proposed methods shows the applicability of reliability of TPS technique and thermal network model.

  • PDF

Thermal Stress Analysis of STS VOD Ladle according to the reinforcement of back filler (Back Filler의 보강에 따른 STS VOD 래들의 열응력 해석)

  • Lee, S.W.;Ham, K.C.;Bae, S.I.;Song, J.I.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.310-315
    • /
    • 2000
  • We analyzed thermal stress of the STS VOD ladle by the variation of material property of refractory, and determined the location of back filler using FE analysis. Thermal distribution of refractory of ladle between hot face and back face were decreased by the increasing the thermal conductivity, and thermal stress of refractory were decreased about 2 to 4 times with the decreasing the young's modulus coefficients. Back filler, which is constructed to absorb the thermal expansion of dolomite refractory, has relatively low thermal conductivity. Inner side of refractory of ladle maintained high temperature, but temperature of outer side of ladle decreased low. Consequently, inner expansion and outer contraction were appeared. and thermal stress were increased, so thermal stress by the construction of back filler were increased.

  • PDF

Study for Thermal Stability of Liquid Crystal Device (액정 소자의 열적 안전성에 관한 연구)

  • 이상극;황정연;서대식;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.439-442
    • /
    • 2004
  • In this study, we investigated about electrooptics characteristic of three kinds of TN cell on the polyimide surface. Monodomain alignments of thermal stressed TN cell over temperature of liquid crystal isotropic phase were almost the same as that of no thermal stressed TN cells. However, the thermal stressed TN cells have many defects. Also, threshold voltage and response time of thermal stressed TN cells show the same performances as no thermal stressed TN cells. There were little changes of value in these TN cells. However, transmittances of TN cells on the polyimide surface decrease with increasing thermal stress time. Finally, the residual DC voltage of the thermal stressed TN cell on the polyimide surface shows decrease of characteristics as increasing thermal stress time. Therefore, the thermal stability of TN cell was decreased by high thermal stress for the long times.

A Study on Thermal Analysis in Ventilated Disk Brake by FEM (FEM을 이용한 벤틸레이티드 디스크 브레이크 열응력 해석에 관한 연구)

  • Kim, Sung-Mo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.544-549
    • /
    • 2009
  • Thermal brake judder caused by the high friction heat of the brake disk. Hot thermal judder makes serious problems such as to be unstability to drivers or to decrease braking force of automobile. Because thermal judder vibration makes high vibration occurrence and thermal deformation of brake disk. Therefore it Is necessary to reduce or eleminate thermal Judder phenomenon by understanding and investigation. This paper introduces the thermal deformation arising from friction heat generation in braking and proposes the FEM analysis to predict the distribution of temperature and thermal deformation. the results of the FEM analysis show the deformed shape and temperature distribution of the disk brake. The optimization is performed to minimize the thermal judder of ventilated disc brake that is induced by the thermal deformation of the disk brake.

  • PDF

Thermal Design of IGBT Module with Respect to Stability (IGBT소자의 열적 안정성을 고려한 방열설계)

  • Lee Joon-Yeob;Song Seok-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.205-208
    • /
    • 2002
  • Thermal design is required with considering thermal stability to verify the reliability of electric power device with using IGBT. Numerical analysis is performed to analyzed the change in thermal resistance with respect to the various thermal density of heating element. Correlations between thermal resistance and heat generation density are established. With using these correlations, performance curve is composed with respect to the change in thermal resistance of cooling conditions for natural convection and forced convection. Thermal fatigue is occurred at the Inside and outside of IGBT by repeated heat load. The crack is occurred between base plate and ceramic substrate for the inside. When the crack length is 4mm, the failure is occurred. Therefore, Thermal design method considering thermal density, thermal fatigue resistance is presented on this study and it is expected to thermal design with considering life prediction.

  • PDF

An Experimental Measurement on Transient Thermal Response in a PI-Controlled VAV System

  • Kim, Seo-Young;Moon, Jeong-Woo;Kim, Won-Nyun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.1
    • /
    • pp.10-16
    • /
    • 2003
  • The present study performs an experimental measurement on transient thermal response of an air-conditioned space by a variable air volume (VAV) system with a PI(pro-portional-integral) control logic. A thermal chamber with a PI controlled VAV unit is constructed to verify the previously suggested stratified multi-zone model. The effects of thermal parameters and control parameters such as supply air temperature and PI control factor are investigated by implementing the thermal chamber test. The experimental results obtained show that transient behavior of the air-conditioned space-temperature is in good accordance with the simulation results of the stratified thermal model.

Thermal Durability of Thermal Barrier Coatings in Furnace Cyclic Thermal Fatigue Test: Effects of Purity and Monoclinic Phase in Feedstock Powder

  • Park, Hyun-Myung;Jun, Soo-Hyk;Lyu, Guanlin;Jung, Yeon-Gil;Yan, Byung-Il;Park, Kwang-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.608-617
    • /
    • 2018
  • The effects of the purity and monoclinic phase of feedstock powder on the thermal durability of thermal barrier coatings (TBC) were investigated through cyclic thermal exposure. Bond and top coats were deposited by high velocity oxygen fuel method using Ni-Co based feedstock powder and air plasma spray method using three kinds of yttria-stabilized zirconia with different purity and monoclinic phase content, respectively. Furnace cyclic thermal fatigue test was performed to investigate the thermal fatigue behavior and thermal durability of TBCs. TBCs with high purity powder showed better sintering resistance and less thickness in the thermally grown oxide layer. The thermal durability was found to strongly depend on the content of monoclinic phase and the porosity in the top coat; the best thermal fatigue behavior and thermal durability were in the TBC prepared with high purity powder without monoclinic phase.

A Study on Thermal Cycle Characteristics of Solid Oxide Fuel Cell (고체 산화물 연료전지의 열사이클 따른 성능 열화 특성 연구)

  • Kim, Eung-Yong;Song, Rak-Hyun;Jeon, Kwang-Sun;Shin, Dong-Ryul;Kang, Thae-Khapp
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1312-1314
    • /
    • 1998
  • SOFC system is often subject to thermal cycle condition during normal start/stop, shutdown, and emergence state. Under the thermal cycle condition of heating and cooling, the SOFC components expand or shrink, which produces thermal stress and thermal shock. The SOFC performance is degraded by the thermal factors. To protect SOFC system from the thermal degradation, the optimum thermal condition must be clarified. In this study, to examine the thermal cycle characteristics, we fabricated single cells of planar SOFC with an area of $5{\times}5cm$. The electrolyte and PEN were tested under thermal cycle conditions in the range of$ 2-8^{\circ}C/min$. After thermal cycle test. crack creation of the components were examined using ultraviolet apparatus. No crack in the electrolyte and PEN were observed. The single cell system with alumina frame were also tested under thermal cycle conditions of 2, 3, $4^{\circ}C/min$. The single cell was fractured at the thermal cycle of 3 and $4^{\circ}C/min$ and the optimum condition of the thermal cycle to be found below $2^{\circ}C/min$.

  • PDF