Browse > Article
http://dx.doi.org/10.4191/kcers.2018.55.6.06

Thermal Durability of Thermal Barrier Coatings in Furnace Cyclic Thermal Fatigue Test: Effects of Purity and Monoclinic Phase in Feedstock Powder  

Park, Hyun-Myung (School of Materials Science and Engineering, Changwon National University)
Jun, Soo-Hyk (School of Materials Science and Engineering, Changwon National University)
Lyu, Guanlin (School of Materials Science and Engineering, Changwon National University)
Jung, Yeon-Gil (School of Materials Science and Engineering, Changwon National University)
Yan, Byung-Il (Doosan Heavy Industries & Construction)
Park, Kwang-Yong (Doosan Heavy Industries & Construction)
Publication Information
Abstract
The effects of the purity and monoclinic phase of feedstock powder on the thermal durability of thermal barrier coatings (TBC) were investigated through cyclic thermal exposure. Bond and top coats were deposited by high velocity oxygen fuel method using Ni-Co based feedstock powder and air plasma spray method using three kinds of yttria-stabilized zirconia with different purity and monoclinic phase content, respectively. Furnace cyclic thermal fatigue test was performed to investigate the thermal fatigue behavior and thermal durability of TBCs. TBCs with high purity powder showed better sintering resistance and less thickness in the thermally grown oxide layer. The thermal durability was found to strongly depend on the content of monoclinic phase and the porosity in the top coat; the best thermal fatigue behavior and thermal durability were in the TBC prepared with high purity powder without monoclinic phase.
Keywords
Thermal barrier coating; Feedstock powder; Monoclinic phase; Purity; Thermal durability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Paul, A. Cipitria, S. A. Tsipas, and T. W. Clyne, "Sintering Characteristics of Plasma Sprayed Zirconia Coatings Containing Different Stabilisers," Surf. Coat. Technol., 203 [8] 1069-74 (2009).   DOI
2 A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, "Mechanisms Controlling the Durability of Thermal Barrier Coatings," Prog. Mater. Sci., 46 [5] 505-53 (2001).   DOI
3 D. R. Clarke, M. Oechsner, and N. P. Padture, "Thermal- Barrier Coatings for more Efficient Gas-Turbine Engines," MRS Bull., 37 [10] 891-98 (2012).   DOI
4 M. N. Rahaman, J. R. Gross, R. E. Dutton, and H. Wang, "Phase Stability, Sintering, and Thermal Conductivity of Plasma-Sprayed $ZrO_2$-$Gd_2O_3$ Compositions for Potential Thermal Barrier Coating Applications," Acta Mater., 54 [6] 1615-21 (2006).   DOI
5 E. Bakan, D. E. Mack, G. Mauer, and R. Vassen, "Gadolinium Zirconate/YSZ Thermal Barrier Coatings: Plasma Spraying, Microstructure, and Thermal Cycling Behavior," J. Am. Ceram. Soc., 97 [12] 4045-51 (2014).   DOI
6 R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stover, "Zirconates as New Materials for Thermal Barrier Coatings," J. Am. Ceram. Soc., 83 [8] 2023-28 (2000).   DOI
7 T. A. Taylor, "Low Thermal Expansion Bondcoats for Thermal Barrier Coatings"; U S Patent 7,910,225 (March 22, 2011).
8 G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam, and E. Lara-Curzio, "Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging," J. Am. Ceram. Soc., 9 [9] 2736-44 (2014).
9 X. Q. Cao, R. Vassen, and D. Stoever, "Ceramic Materials for Thermal Barrier Coatings," J. Eur. Ceram. Soc., 24 [1] 1-10 (2004).   DOI
10 R. Harnacha, P. Fauchais, and F. Nardou, "Influence of Dopant on the Thermal Properties of Two Plasma- Sprayed Zirconia Coatings Part I: Relationship between Powder Characteristics and Coating Properties," J. Therm. Spray Technol., 5 [4] 431 (1996).   DOI
11 S. Stemmer, J. Vleugels, and O. V. D. Biest, "Grain Boundary Segregation in High-Purity, Yttria-Stabilized Tetragonal Zirconia Polycrystals (Y-TZP)," J. Eur. Ceram. Soc., 18 [11] 1565-70 (1998).   DOI
12 K. Y. Park, Y. G. Jung, I. S. Kim, and B. I. Yang, "Effects of Purity and Phase Content of Feedstock Powder on Thermal Durability of Zirconia-Based Thermal Barrier Coatings," J. Therm. Spray Technol., 26 [6] 1161-67 (2017).   DOI
13 J. Wang, H. P. Li, and R. Stevens, "Hafnia and Hafnia-Toughened Ceramics," J. Mater. Sci., 27 [20] 5397-430 (1992).   DOI
14 J. L. Smialek, "Compiled Furnace Cyclic Lives of EB-PVD Thermal Barrier Coatings," Surf. Coat. Technol., 276 31-8 (2015).   DOI
15 C. Wang, Y. Wang, S. Fan, Y. You, L. Wang, C. Yang, X. Sun, and X. Li, "Optimized Functionally Graded $La_2Zr_2O_7$/8YSZ Thermal Barrier Coatings Fabricated by Suspension Plasma spraying," J. Alloys Compd., 649 1182-90 (2015).   DOI
16 D. Song, U. Paik, X. Guo, J. Zhang, T. K. Woo, Z. Lu, S. H. Jung, J. H Lee, and Y. G. Jung, "Microstructure Design for Blended Feedstock and its Thermal Durability in Lanthanum Zirconate Based Thermal Barrier Coatings," Surf. Coat. Technol., 308 40-9 (2016).   DOI
17 S. Deshpande, A. Kulkarni, S. Sampath, and H. Herman, "Application of Image Analysis for Characterization of Porosity in Thermal Spray Coatings and Correlation with Small Angle Neutron Scattering," Surf. Coat. Technol., 187 [1] 6-16 (2004).   DOI
18 W. R. Chen, X. Wu, B. R. Marple, and P. C. Patnaik, "Oxidation and Crack Nucleation/Growth in an Air-Plasma-Sprayed Thermal Barrier Coating with NiCrAlY Bond Coat," Surf. Coat. Technol., 197 109-15 (2005).   DOI
19 D. Zhu and A. M. Robert, "Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions," J. Therm. Spray Technol., 9 [2] 175-80 (2000).   DOI
20 G. Thurn, G. A. Schneider, H. A. Bahr, and F. Aldinger, "Toughness Anisotropy and Damage Behavior of Plasma Sprayed $ZrO_2$ Thermal Barrier Coatings," Surf. Coat. Technol., 123 [2-3] 147-58 (2000).   DOI
21 M. K. Gupta and P. Nylen, "A Modelling Approach to Design of Microstructures in Thermal Barrier Coatings," J. Ceram. Sci. Technol., 4 [2] 85-92 (2013).
22 N. P. Padture, M. Gell, and E. H. Jordan, "Thermal Barrier Coatings for Gas-Turbine Engine Applications," Science, 296 [5566] 280-84 (2002).   DOI
23 A. V. Put, D. Oquab, E. Pere, A. Raffaitin, and D. Monceau, "Beneficial Effect of Pt and of Pre-Oxidation on the Oxidation Behaviour of an NiCoCrAlYTa Bond-Coating for Thermal Barrier Coating Systems," Oxid. Met., 75 [5-6] 247-79 (2011).   DOI
24 Y. Li, C. J. Li, Q. Zhang, L. K. Xing, and G. J. Yang, "Effect of Chemical Compositions and Surface Morphologies of MCrAlY Coating on its Isothermal Oxidation Behavior," J. Therm. Spray Technol., 20 [1-2] 121-31 (2011).   DOI
25 A. Gil, V. Shemet, R. Vassen, M. Subanovic, J. Toscano, D. Naumenko, L. Singheiser, and W. J. Quadakkers, "Effect of Surface Condition on the Oxidation Behaviour of MCrAlY Coatings," Surf. Coat. Technol., 201 [7] 3824-28 (2006).   DOI
26 O. Trunova, T. Beck, R. Herzog, R. W. Steinbrech, and L. Singheiser, "Damage Mechanisms and Lifetime Behavior of Plasma Sprayed Thermal Barrier Coating Systems for Gas Turbines-Part I: Experiments," Surf. Coat. Technol., 202 [20] 5027-32 (2008).   DOI
27 D. R. Clarke and C. G. Levi, "Materials Design for the Next Generation Thermal Barrier Coatings," Annu. Rev. Mater. Res., 33 [1] 383-417 (2003).   DOI
28 M. Gell, E. Jordan, K. Vaidyanathan, K. McCarron, B. Barber, Y. H. Sohn, and V. K. Tolpygo, "Bond Strength, Bond Stress and Spallation Mechanisms of Thermal Barrier Coatings," Surf. Coat. Technol., 120 53-60 (1999).
29 R. A. Miller, "Current Status of Thermal Barrier Coatings- an Overview," Surf. Coat. Technol., 30 [1] 1-11 (1987).   DOI
30 S. M. Meier and D. K. Gupta, "The Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications," J. Eng. Gas Turbines Power, 116 [1] 250-57 (1994).   DOI
31 R. Stevens, An Introduction to Zirconia; p. 7, Magnesium Elektron Limited, Twickenham, 1983.
32 F. Andreola, C. Leonelli, and M. Romagnoli, "Techniques Used to Determine Porosity," Am. Ceram. Soc. Bull., 79 [7] 49-52 (2000).
33 R. A Miller, "Thermal Barrier Coatings for Aircraft Engines: History and Directions," J. Therm. Spray Technol., 6 [1] 35 (1997).   DOI
34 S. Bose and J. DeMasi-Marcin, "Thermal Barrier Coating Experience in Gas Turbine Engines at Pratt & Whitney," J. Therm. Spray Technol., 6 [1] 99-104 (1997).   DOI
35 R. L. Jones, Metallurgical and Ceramic Protective Coatings; pp. 194-235, Chapman and Hall, London, 1996.