• Title/Summary/Keyword: therapeutics

Search Result 3,450, Processing Time 0.023 seconds

Effects of Sansachunghyul-tang (SCT) on blood cholesterol levels in Triton WR1339-induced hyperlipidemic rats (산사청혈탕(山楂淸血湯)이 Triton WR1339로 유발된 흰쥐의 고지혈증(高脂血症)에 미치는 영향)

  • Chang, Mun Seog;Joo, Seung-Hun;Kim, Eun Yi;Park, Seong Kyu
    • Herbal Formula Science
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Objectives : Sansachunghyul-tang (山楂淸血湯) is a new formula consist of some herbs to treatment of hyperlipidemia. The lipid-lowering effects of the water extract of Sansachunghyul-tang (SCT) were examined using Triton WR1339-induced hyperlipidemic rats. Methods : Hyperlipidemia was induced by intravenous injection of Triton WR1339 (tyloxapol) at 200 mg/kg body weight. Four groups of experimental animals were used: normal, control, and two sample groups. Sample groups were injected with SCT (100 and 1000 mg/kg) for 7 days. Results : SCT produced statistically significant lowering effects on levels of total cholesterol (81.8 and 83.1%, p < 0.01, respectively), triglyceride (88.9 and 93.4%, p < 0.01, respectively), and phospholipid (86.7 and 94.3%, p < 0.01, respectively) than the control group. Taken together, SCT improved parameters of the HDL-cholesterol and LDL-cholesterol levels. Conclusions : In conclusion, These results suggest that SCT could act as a potent antihyperlipidemic in therapeutics for hyperlipidemia.

Comparative Behavioral Correlation of High and Low-Performing Mice in the Forced Swim Test

  • Valencia, Schley;Gonzales, Edson Luck;Adil, Keremkleroo Jym;Jeon, Se Jin;Kwon, Kyoung Ja;Cho, Kyu Suk;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.349-356
    • /
    • 2019
  • Behavioral analysis in mice provided important contributions in helping understand and treat numerous neurobehavioral and neuropsychiatric disorders. The behavioral performance of animals and humans is widely different among individuals but the neurobehavioral mechanism of the innate difference is seldom investigated. Many neurologic conditions share comorbid symptoms that may have common pathophysiology and therapeutic strategy. The forced swim test (FST) has been commonly used to evaluate the "antidepressant" properties of drugs yet the individual difference analysis of this test was left scantly investigated along with the possible connection among other behavioral domains. This study conducted an FST-screening in outbred CD-1 male mice and segregated them into three groups: high performers (HP) or the active swimmers, middle performers (MP), and low performers (LP) or floaters. After which, a series of behavioral experiments were performed to measure their behavioral responses in the open field, elevated plus maze, Y maze, three-chamber social assay, novel object recognition, delay discounting task, and cliff avoidance reaction. The behavioral tests battery revealed that the three groups displayed seemingly correlated differences in locomotor activity and novel object recognition but not in other behaviors. This study suggests that the HP group in FST has higher locomotor activity and novelty-seeking tendencies compared to the other groups. These results may have important implications in creating behavior database in animal models that could be used for predicting interconnections of various behavioral domains, which eventually helps to understand the neurobiological mechanism controlling the behaviors in individual subjects.

Purpurogallin Protects Keratinocytes from Damage and Apoptosis Induced by Ultraviolet B Radiation and Particulate Matter 2.5

  • Zhen, Ao Xuan;Piao, Mei Jing;Hyun, Yu Jae;Kang, Kyoung Ah;Ryu, Yea Seong;Cho, Suk Ju;Kang, Hee Kyoung;Koh, Young Sang;Ahn, Mee Jung;Kim, Tae Hoon;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.395-403
    • /
    • 2019
  • Purpurogallin, a natural phenol obtained from oak nutgalls, has been shown to possess antioxidant, anticancer, and anti-inflammatory effects. Recently, in addition to ultraviolet B (UVB) radiation that induces cell apoptosis via oxidative stress, particulate matter 2.5 ($PM_{2.5}$) was shown to trigger excessive production of reactive oxygen species. In this study, we observed that UVB radiation and $PM_{2.5}$ severely damaged human HaCaT keratinocytes, disrupting cellular DNA, lipids, and proteins and causing mitochondrial depolarization. Purpurogallin protected HaCaT cells from apoptosis induced by UVB radiation and/or $PM_{2.5}$. Furthermore, purpurogallin effectively modulates the pro-apoptotic and anti-apoptotic proteins under UVB irradiation via caspase signaling pathways. Additionally, purpurogallin reduced apoptosis via MAPK signaling pathways, as demonstrated using MAPK-p38, ERK, and JNK inhibitors. These results indicate that purpurogallin possesses antioxidant effects and protects cells from damage and apoptosis induced by UVB radiation and $PM_{2.5}$.

Vitamin D Improves Intestinal Barrier Function in Cirrhosis Rats by Upregulating Heme Oxygenase-1 Expression

  • Wang, Peng-fei;Yao, Dan-hua;Hu, Yue-yu;Li, Yousheng
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.222-230
    • /
    • 2019
  • Intestinal barrier dysfunction always accompanies cirrhosis in patients with advanced liver disease and is an important contributor facilitating bacterial translocation (BT), which has been involved in the pathogenesis of cirrhosis and its complications. Several studies have demonstrated the protective effect of Vitamin D on intestinal barrier function. However, severe cholestasis leads to vitamin D depletion. This study was designed to test whether vitamin D therapy improves intestinal dysfunction in cirrhosis. Rats were subcutaneously injected with 50% sterile $CCl_4$ (a mixture of pure $CCl_4$ and olive oil, 0.3 mL/100 g) twice a week for 6 weeks. Next, $1,25(OH)_2D_3$ ($0.5{\mu}g/100g$) and the vehicle were administered simultaneously with $CCl_4$ to compare the extent of intestinal histologic damage, tight junction protein expression, intestinal barrier function, BT, intestinal proliferation, apoptosis, and enterocyte turnover. Intestinal heme oxygenase-1 (HO-1) expression and oxidative stress were also assessed. We found that vitamin D could maintain intestinal epithelial proliferation and turnover, inhibit intestinal epithelial apoptosis, alleviate structural damage, and prevent BT and intestinal barrier dysfunction. These were achieved partly through restoration of HO-1 and inhibition of oxidative stress. Taken together, our results suggest that vitamin D ameliorated intestinal epithelial turnover and improved the integrity and function of intestinal barrier in $CCl_4$-induced liver cirrhotic rats. HO-1 signaling activation was involved in these above beneficial effects.

Suppressor of Variegation 3-9 Homolog 2, a Novel Binding Protein of Translationally Controlled Tumor Protein, Regulates Cancer Cell Proliferation

  • Kim, A-Reum;Sung, Jee Young;Rho, Seung Bae;Kim, Yong-Nyun;Yoon, Kyungsil
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.231-239
    • /
    • 2019
  • Suppressor of Variegation 3-9 Homolog 2 (SUV39H2) methylates the lysine 9 residue of histone H3 and induces heterochromatin formation, resulting in transcriptional repression or silencing of target genes. SUV39H1 and SUV39H2 have a role in embryonic development, and SUV39H1 was shown to suppress cell cycle progression associated with Rb. However, the function of human SUV39H2 has not been extensively studied. We observed that forced expression of SUV39H2 decreased cell proliferation by inducing $G_1$ cell cycle arrest. In addition, SUV39H2 was degraded through the ubiquitin-proteasomal pathway. Using yeast two-hybrid screening to address the degradation mechanism and function of SUV39H2, we identified translationally controlled tumor protein (TCTP) as an SUV39H2-interacting molecule. Mapping of the interacting regions indicated that the N-terminal 60 amino acids (aa) of full-length SUV39H2 and the C-terminus of TCTP (120-172 aa) were critical for binding. The interaction of SUV39H2 and TCTP was further confirmed by co-immunoprecipitation and immunofluorescence staining for colocalization. Moreover, depletion of TCTP by RNAi led to up-regulation of SUV39H2 protein, while TCTP overexpression reduced SUV39H2 protein level. The half-life of SUV39H2 protein was significantly extended upon TCTP depletion. These results clearly indicate that TCTP negatively regulates the expression of SUV39H2 post-translationally. Furthermore, SUV39H2 induced apoptotic cell death in TCTP-knockdown cells. Taken together, we identified SUV39H2, as a novel target protein of TCTP and demonstrated that SUV39H2 regulates cell proliferation of lung cancer cells.

Neuroprotective Effect of β-Lapachone in MPTP-Induced Parkinson's Disease Mouse Model: Involvement of Astroglial p-AMPK/Nrf2/HO-1 Signaling Pathways

  • Park, Jin-Sun;Leem, Yea-Hyun;Park, Jung-Eun;Kim, Do-Yeon;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.178-184
    • /
    • 2019
  • Parkinson's disease is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons within the substantia nigra pars compacta. In the present study, we investigated whether ${\beta}-Lapachone$ (${\beta}-LAP$), a natural naphthoquinone compound isolated from the lapacho tree (Tabebuia avellanedae), elicits neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mouse model. ${\beta}-LAP$ reduced the tyrosine hydroxylase (TH)-immunoreactive fiber loss induced by MPTP in the dorsolateral striatum, and alleviated motor dysfunction as determined by the rotarod test. In addition, ${\beta}-LAP$ protected against MPTP-induced loss of TH positive neurons, and upregulated B-cell lymphoma 2 protein (Bcl-2) expression in the substantia nigra. Based on previous reports on the neuroprotective role of nuclear factor-E2-related factor-2 (Nrf2) in neurodegenerative diseases, we investigated whether ${\beta}-LAP$ induces upregulation of the Nrf2-hemeoxygenae-1 (HO-1) signaling pathway molecules in MPTP-injected mouse brains. Western blot and immunohistochemical analyses indicated that ${\beta}-LAP$ increased HO-1 expression in glial fibrillary acidic protein-positive astrocytes. Moreover, ${\beta}-LAP$ increased the nuclear translocation and DNA binding activity of Nrf2, and the phosphorylation of upstream adenosine monophosphate-activated protein kinase (AMPK). ${\beta}-LAP$ also increased the localization of p-AMPK and Nrf2 in astrocytes. Collectively, our data suggest that ${\beta}-LAP$ exerts neuroprotective effect in MPTP-injected mice by upregulating the p-AMPK/Nrf2/HO-1 signaling pathways in astrocytes.

Schisantherin B Improves the Pathological Manifestations of Mice Caused by Behavior Desperation in Different Ages-Depression with Cognitive Impairment

  • Xu, Mengjie;Xiao, Feng;Wang, Mengshi;Yan, Tingxu;Yang, Huilin;Wu, Bo;Bi, Kaishun;Jia, Ying
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.160-167
    • /
    • 2019
  • Depression is a major mood disorder. Abnormal expression of glial glutamate transporter-1 (GLT-1) is associated with depression. Schisantherin B (STB) is one bioactive of lignans isolated from Schisandra chinensis (Turcz.) Baill which has been commonly used as a traditional herbal medicine for thousands of years. This paper was designed to investigate the effects of STB on depressive mice induced by forced swimming test (FST). Additionally, we also assessed the impairment of FST on cognitive function in mice with different ages. FST and open field test (OFT) were used for assessing depressive symptoms, and Y-maze was used for evaluating cognition processes. Our study showed that STB acting as an antidepressant, which increased GLT-1 levels by promoting PI3K/AKT/mTOR pathway. Although the damage is reversible, short-term learning and memory impairment caused by FST test is more serious in the aged mice, and STB also exerts cognition improvement ability in the meanwhile. Our findings suggested that STB might be a promising therapeutic agent of depression by regulating the GLT-1 restoration as well as activating PI3K/AKT/mTOR pathway.

Effects of Intraperitoneal N-methyl-D-aspartate (NMDA) Administration on Nociceptive/Repetitive Behaviors in Juvenile Mice

  • Kim, Seonmin;Kim, Do Gyeong;Gonzales, Edson luck;Mabunga, Darine Froy N.;Shin, Dongpil;Jeon, Se Jin;Shin, Chan Young;Ahn, TaeJin;Kwon, Kyoung Ja
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.168-177
    • /
    • 2019
  • Dysregulation of excitatory neurotransmission has been implicated in the pathogenesis of neuropsychiatric disorders. Pharmacological inhibition of N-methyl-D-aspartate (NMDA) receptors is widely used to model neurobehavioral pathologies and underlying mechanisms. There is ample evidence that overstimulation of NMDA-dependent neurotransmission may induce neurobehavioral abnormalities, such as repetitive behaviors and hypersensitization to nociception and cognitive disruption, pharmacological modeling using NMDA has been limited due to the induction of neurotoxicity and blood brain barrier breakdown, especially in young animals. In this study, we examined the effects of intraperitoneal NMDA-administration on nociceptive and repetitive behaviors in ICR mice. Intraperitoneal injection of NMDA induced repetitive grooming and tail biting/licking behaviors in a dose- and age-dependent manner. Nociceptive and repetitive behaviors were more prominent in juvenile mice than adult mice. We did not observe extensive blood brain barrier breakdown or neuronal cell death after peritoneal injection of NMDA, indicating limited neurotoxic effects despite a significant increase in NMDA concentration in the cerebrospinal fluid. These findings suggest that the observed behavioral changes were not mediated by general NMDA toxicity. In the hot plate test, we found that the latency of paw licking and jumping decreased in the NMDA-exposed mice especially in the 75 mg/kg group, suggesting increased nociceptive sensitivity in NMDA-treated animals. Repetitive behaviors and increased pain sensitivity are often comorbid in psychiatric disorders (e.g., autism spectrum disorder). Therefore, the behavioral characteristics of intraperitoneal NMDA-administered mice described herein may be valuable for studying the mechanisms underlying relevant disorders and screening candidate therapeutic molecules.

Development of a Label-Free LC-MS/MS-Based Glucosylceramide Synthase Assay and Its Application to Inhibitors Screening for Ceramide-Related Diseases

  • Fu, Zhicheng;Yun, So Yoon;Won, Jong Hoon;Back, Moon Jung;Jang, Ji Min;Ha, Hae Chan;Lee, Hae Kyung;Shin, In Chul;Kim, Ju Yeun;Kim, Hee Soo;Kim, Dae Kyong
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.193-200
    • /
    • 2019
  • Ceramide metabolism is known to be an essential etiology for various diseases, such as atopic dermatitis and Gaucher disease. Glucosylceramide synthase (GCS) is a key enzyme for the synthesis of glucosylceramide (GlcCer), which is a main ceramide metabolism pathway in mammalian cells. In this article, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to determine GCS activity using synthetic non-natural sphingolipid C8-ceramide as a substrate. The reaction products, C8-GlcCer for GCS, could be separated on a C18 column by reverse-phase high-performance liquid chromatography (HPLC). Quantification was conducted using the multiple reaction monitoring (MRM) mode to monitor the precursor-to-product ion transitions of m/z $588.6{\rightarrow}264.4$ for C8-GlcCer at positive ionization mode. The calibration curve was established over the range of 0.625-160 ng/mL, and the correlation coefficient was larger than 0.999. This method was successfully applied to detect GCS in the human hepatocellular carcinoma cell line (HepG2 cells) and mouse peripheral blood mononuclear cells. We also evaluated the inhibition degree of a known GCS inhibitor 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) on GCS enzymatic activity and proved that this method could be successfully applied to GCS inhibitor screening of preventive and therapeutic drugs for ceramide metabolism diseases, such as atopic dermatitis and Gaucher disease.

Isolation of MLL1 Inhibitory RNA Aptamers

  • Ul-Haq, Asad;Jin, Ming Li;Jeong, Kwang Won;Kim, Hwan-Mook;Chun, Kwang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.201-209
    • /
    • 2019
  • Mixed lineage leukemia proteins (MLL) are the key histone lysine methyltransferases that regulate expression of diverse genes. Aberrant activation of MLL promotes leukemia as well as solid tumors in humans, highlighting the urgent need for the development of an MLL inhibitor. We screened and isolated MLL1-binding ssRNAs using SELEX (${\underline{S}}ystemic$ ${\underline{E}}volution$ of ${\underline{L}}igands$ by ${\underline{E}}xponential$ enrichment) technology. When sequences in sub-libraries were obtained using next-generation sequencing (NGS), the most enriched aptamers-APT1 and APT2-represented about 30% and 26% of sub-library populations, respectively. Motif analysis of the top 50 sequences provided a highly conserved sequence: 5'-A[A/C][C/G][G/U][U/A]ACAGAGGG[U/A]GG[A/C] GAGUGGGU-3'. APT1, APT2, and APT5 embracing this motif generated secondary structures with similar topological characteristics. We found that APT1 and APT2 have a good binding activity and the analysis using mutated aptamer variants showed that the site information in the central region was critical for binding. In vitro enzyme activity assay showed that APT1 and APT2 had MLL1 inhibitory activity. Three-dimensional structure prediction of APT1-MLL1 complex indicates multiple weak interactions formed between MLL1 SET domain and APT1. Our study confirmed that NGS-assisted SELEX is an efficient tool for aptamer screening and that aptamers could be useful in diagnosis and treatment of MLL1-mediated diseases.