Comparative Behavioral Correlation of High and Low-Performing Mice in the Forced Swim Test |
Valencia, Schley
(Department of Neuroscience, School of Medicine, Konkuk University)
Gonzales, Edson Luck (Department of Neuroscience, School of Medicine, Konkuk University) Adil, Keremkleroo Jym (Department of Neuroscience, School of Medicine, Konkuk University) Jeon, Se Jin (Center for Neuroscience, Korea Institute of Science and Technology) Kwon, Kyoung Ja (Department of Neuroscience, School of Medicine, Konkuk University) Cho, Kyu Suk (Department of Neuroscience, School of Medicine, Konkuk University) Shin, Chan Young (Department of Neuroscience, School of Medicine, Konkuk University) |
1 | Baxter, M. G. (2010) "I've seen it all before": explaining age-related impairments in object recognition. Theoretical comment on Burke et al. (2010). Behav. Neurosci. 124, 706-709. DOI |
2 | Bogdanova, O. V., Kanekar, S., D'Anci, K. E. and Renshaw, P. F. (2013) Factors influencing behavior in the forced swim test. Physiol. Behav. 118, 227-239. DOI |
3 | Can, A., Dao, D. T., Arad, M., Terrillion, C. E., Piantadosi, S. C. and Gould, T. D. (2012) The mouse forced swim test. J. Vis. Exp. (59), 3638. |
4 | Chen, X., Zhang, W., Li, T., Guo, Y., Tian, Y., Wang, F., Liu, S., Shen, H.-Y., Feng, Y. and Xiao, L. (2015) Impairment of oligodendroglia maturation leads to aberrantly increased cortical glutamate and anxiety-like behaviors in juvenile mice. Front. Cell. Neurosci. 9, 467. |
5 | Cloninger, C. R. (1986) A unified biosocial theory of personality and its role in the development of anxiety states. Psych. Dev. 3, 167-226. |
6 | Commons, K. G., Cholanians, A. B., Babb, J. A. and Ehlinger, D. G. (2017) The rodent forced swim test measures stress-coping strategy, not depression-like behavior. ACS Chem. Neurosci. 8, 955-960. DOI |
7 | Crawley, J. N. (2007) What's Wrong with My Mouse?: Behavioral Phenotyping of Transgenic and Knockout Mice. John Wiley & Sons. |
8 | dela Pena, I., Gonzales, E. L., de la Pena, J. B., Kim, B.-N., Han, D. H., Shin, C. Y. and Cheong, J. H. (2015) Individual differences in novelty-seeking behavior in spontaneously hypertensive rats: Enhanced sensitivity to the reinforcing effect of methylphenidate in the high novelty-preferring subpopulation. J. Neurosci. Methods 252, 48-54. DOI |
9 | Ennaceur, A. (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav. Brain Res. 215, 244-254. DOI |
10 | Gonzales, E. L. T., Jang, J.-H., Mabunga, D. F. N., Kim, J.-W., Ko, M. J., Cho, K. S., Bahn, G. H., Hong, M., Ryu, J. H. and Kim, H. J. (2016) Supplementation of Korean Red Ginseng improves behavior deviations in animal models of autism. Food Nutr. Res. 60, 29245. DOI |
11 | Matta, A. d., Goncalves, F. L. and Bizarro, L. (2012) Delay discounting: concepts and measures. Psychol. Neurosci. 5, 135-146. DOI |
12 | Hooks, M. S., Colvin, A. C., Juncos, J. L. and Justice, J. B., Jr. (1992) Individual differences in basal and cocaine-stimulated extracellular dopamine in the nucleus accumbens using quantitative microdialysis. Brain Res. 587, 306-312. DOI |
13 | Jama, A., Cecchi, M., Calvo, N., Watson, S. and Akil, H. (2008) Interindividual differences in novelty-seeking behavior in rats predict differential responses to desipramine in the forced swim test. Psychopharmacology 198, 333-340. DOI |
14 | Karl, T., Pabst, R. and von Horsten, S. (2003) Behavioral phenotyping of mice in pharmacological and toxicological research. Exp. Toxicol. Pathol. 55, 69-83. DOI |
15 | Kim, K. C., Kim, P., Go, H. S., Choi, C. S., Yang, S.-I., Cheong, J. H., Shin, C. Y. and Ko, K. H. (2011) The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats. Toxicol. Lett. 201, 137-142. DOI |
16 | Lezak, K. R., Missig, G. and Carlezon, W. A., Jr. (2017) Behavioral methods to study anxiety in rodents. Dialogues Clin. Neurosci. 19, 181. DOI |
17 | Mitchell, S. H. (2014) Assessing delay discounting in mice. Curr. Protoc. Neurosci. 66, 8-30. DOI |
18 | Moy, S., Nadler, J., Perez, A., Barbaro, R., Johns, J., Magnuson, T., Piven, J. and Crawley, J. (2004) Sociability and preference for social novelty in five inbred strains: an approach to assess autisticlike behavior in mice. Genes. Brain Behav. 3, 287-302. DOI |
19 | Pellow, S., Chopin, P., File, S. E. and Briley, M. (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 14, 149-167. DOI |
20 | National Research Council (2010) Guide for the Care and Use of Laboratory Animals. National Academies Press. |
21 | Petit-Demouliere, B., Chenu, F. and Bourin, M. (2005) Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology 177, 245-255. DOI |
22 |
Sarter, M., Bodewitz, G. and Stephens, D. N. (1988) Attenuation of scopolamine-induced impairment of spontaneous alternation behaviour by antagonist but not inverse agonist and agonist |
23 | Pitychoutis, P. M., Pallis, E. G., Mikail, H. G. and Papadopoulou-Daifoti, Z. (2011) Individual differences in novelty-seeking predict differential responses to chronic antidepressant treatment through sex-and phenotype-dependent neurochemical signatures. Behav. Brain Res. 223, 154-168. DOI |
24 | Prut, L. and Belzung, C. (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur. J. Pharmacol. 463, 3-33. DOI |
25 | Rosenzweig, M. R., Breedlove, S. M. and Leiman, A. L. (2002) Biological Psychology: an Introduction to Behavioral, Cognitive, and Clinical Neuroscience. Sinauer Associates. |
26 | Stafstrom, C. E. (2006) Behavioral and cognitive testing procedures in animal models of epilepsy. In Models of Seizures and Epilepsy. Elsevier Inc. |
27 | Stedenfeld, K. A., Clinton, S. M., Kerman, I. A., Akil, H., Watson, S. J. and Sved, A. F. (2011) Novelty-seeking behavior predicts vulnerability in a rodent model of depression. Physiol. Behav. 103, 210-216. DOI |
28 | Verheij, M. M., de Mulder, E. L., De Leonibus, E., van Loo, K. M. and Cools, A. R. (2008) Rats that differentially respond to cocaine differ in their dopaminergic storage capacity of the nucleus accumbens. J. Neurochem. 105, 2122-2133. DOI |
29 | Stults-Kolehmainen, M. A. and Sinha, R. (2014) The effects of stress on physical activity and exercise. Sports Med. 44, 81-121. DOI |
30 | Tanaka, J. W. and Curran, T. (2001) A neural basis for expert object recognition. Psychol. Sci. 12, 43-47. DOI |
31 | Wolf, A., Bauer, B., Abner, E. L., Ashkenazy-Frolinger, T. and Hartz, A. M. (2016) A comprehensive behavioral test battery to assess learning and memory in 129S6/Tg2576 mice. PLoS ONE 11, e0147733. DOI |
32 | Vogel-Ciernia, A. and Wood, M. A. (2014) Examining object location and object recognition memory in mice. Curr. Protoc. Neurosci. 69, 8.31.1-8.31.17. |
33 | Walf, A. A. and Frye, C. A. (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc. 2, 322-328. DOI |
34 | Wermelinger Avila, M. P., Correa, J. C., Lucchetti, A. L. G. and Lucchetti, G. (2018) The role of physical activity in the association between resilience and mental health in older adults. J. Aging Phys. Act. 26, 248-253. DOI |
35 | Yoshida, S., Numachi, Y., Matsuoka, H. and Sato, M. (1998) Impairment of cliff avoidance reaction induced by subchronic methamphetamine administration and restraint stress: comparison between two inbred strains of rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 22, 1023-1032. DOI |
![]() |