• 제목/요약/키워드: therapeutic targeting

검색결과 382건 처리시간 0.027초

Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases

  • Oh, Doo-Byoung
    • BMB Reports
    • /
    • 제48권8호
    • /
    • pp.438-444
    • /
    • 2015
  • Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy. [BMB Reports 2015; 48(8): 438-444]

In Vitro Evaluation of Three Positional Isomers of mono-PEGylated Salmon Calcitonin

  • Jung, J.Y.;Youn, Y.S.;Oh, S.H.;Hong, S.T.;Lee, J.E.;Lee, S.O.;Lee, K.C.
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.300.1-300.1
    • /
    • 2003
  • Salmon calcitonin (sCT) is a therapeutic polypeptide hormone consisting of 32 amino acids (3432 Da). As with other bioactive peptide therapeutics, however, therapeutic use of sCT has been limited due to the problems of short circulating half-life and rapid proteolytic degradation. To get over this problem, the three positional isomers of mono-PEGylated sCT were prepared and among these, the best drug candiate for nasal application was chosen. (omitted)

  • PDF

Gallic acid-mitochondria targeting sequence-H3R9 induces mitochondria-targeted cytoprotection

  • Bae, Yoonhee;Kim, Goo-Young;Jessa, Flores;Ko, Kyung Soo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권1호
    • /
    • pp.15-24
    • /
    • 2022
  • The development of selective targeting of drug molecules towards the mitochondria is an important issue related to therapy efficacy. In this study, we report that gallic acid (GA)-mitochondria targeting sequence (MTS)-H3R9 exhibits a dual role as a mitochondria-targeting vehicle with antioxidant activity for disease therapy. In viability assays, GA-MTS-H3R9 showed a better rescue action compared to that of MTS-H3R9. GA-MTS-H3R9 dramatically exhibited cell penetration and intercellular uptake compared to MTS and fit escape from lysosome release to the cytosol. We demonstrated the useful targeting of GA-MTS-H3R9 towards mitochondria in AC16 cells. Also, we observed that the antioxidant properties of mitochondrial-accrued GA-MTS-H3R9 alleviated cell damage by reactive oxygen species production and disrupted mitochondrial membrane potential. GA-MTS-H3R9 showed a very increased cytoprotective effect against anticancer activity compared to that of MTS-H3R9. We showed that GA-MTS-H3R9 can act as a vehicle for mitochondria-targeting and as a reagent for therapeutic applications intended for cardiovascular disease treatment.

Mitochondria-targeting theranostics

  • Kang, Han Chang
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.221-234
    • /
    • 2018
  • Background: Interest in subcellular organelle-targeting theranostics is substantially increasing due to the significance of subcellular organelle-targeting drug delivery for maximizing therapeutic effects and minimizing side effects, as well as the significance of theranostics for delivering therapeutics at the correct locations and doses for diseases throughout diagnosis. Among organelles, mitochondria have received substantial attention due to their significant controlling functions in cells. Main body: With the necessity of subcellular organelle-targeting drug delivery and theranostics, examples of mitochondria-targeting moieties and types of mitochondria-targeting theranostics were introduced. In addition, the current studies of mitochondria-targeting theranostic chemicals, chemical conjugates, and nanosystems were summarized. Conclusion: With the current issues of mitochondria-targeting theranostic chemicals, chemical conjugates, and nanosystems, their potentials and alternatives are discussed.

치료용 방사성동위원소 (Therapeutic radionuclides)

  • 최선주;홍영돈;이소영
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제40권2호
    • /
    • pp.58-65
    • /
    • 2006
  • Since the development of sophisticated molecular carriers such as octereotides for peptide receptor targeting and monoclonal antibodies against various antigens associated with specific tumor types, radionuclide therapy (RNT) employing open sources of therapeutic agents is promising modality for treatment of tumors. furthermore, the emerging of new therapeutic regimes and new approaches for tumor treatment using radionuclide are anticipated in near future. In targeted radiotherapy using peptides and other receptor based tarrier molecules, the use of radionuclide with high specific activity in formulating the radiopharmaceutical is essential in order to deliver sufficient number of radionuclides to the target site without saturating the target. In order to develop effective radiopharmaceuticals for therapeutic applications, it is crucial to carefully consider the choice of appropriate radionuclides as well as the tarrier moiety with suitable pharmacokinetic properties that could result in good in vivo localization and desired excretion. Up to date, only a limited number of radionuclides have been applied in radiopharmaceutical development due to the constraints in compliance with their physical half-life, decay characteristics, cost and availability in therapeutic applications. In this review article, we intend to provide with the improved understanding of the factors of importance of appropriate radionuclide for therapy with respect to their physical properties and therapeutic applications.

Modulation of Immunosuppression by Oligonucleotide-Based Molecules and Small Molecules Targeting Myeloid-Derived Suppressor Cells

  • Lim, Jihyun;Lee, Aram;Lee, Hee Gu;Lim, Jong-Seok
    • Biomolecules & Therapeutics
    • /
    • 제28권1호
    • /
    • pp.1-17
    • /
    • 2020
  • Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exert suppressive function on the immune response. MDSCs expand in tumor-bearing hosts or in the tumor microenvironment and suppress T cell responses via various mechanisms, whereas a reduction in their activities has been observed in autoimmune diseases or infections. It has been reported that the symptoms of various diseases, including malignant tumors, can be alleviated by targeting MDSCs. Moreover, MDSCs can contribute to patient resistance to therapy using immune checkpoint inhibitors. In line with these therapeutic approaches, diverse oligonucleotide-based molecules and small molecules have been evaluated for their therapeutic efficacy in several disease models via the modulation of MDSC activity. In the current review, MDSC-targeting oligonucleotides and small molecules are briefly summarized, and we highlight the immunomodulatory effects on MDSCs in a variety of disease models and the application of MDSC-targeting molecules for immuno-oncologic therapy.

Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting

  • Eun, Kiyoung;Ham, Seok Won;Kim, Hyunggee
    • BMB Reports
    • /
    • 제50권3호
    • /
    • pp.117-125
    • /
    • 2017
  • Most of the cancers are still incurable human diseases. According to recent findings, especially targeting cancer stem cells (CSCs) is the most promising therapeutic strategy. CSCs take charge of a cancer hierarchy, harboring stem cell-like properties involving self-renewal and aberrant differentiation potential. Most of all, the presence of CSCs is closely associated with tumorigenesis and therapeutic resistance. Despite the numerous efforts to target CSCs, current anti-cancer therapies are still impeded by CSC-derived cancer malignancies; increased metastases, tumor recurrence, and even acquired resistance against the anti-CSC therapies developed in experimental models. One of the most forceful underlying reasons is a "cancer heterogeneity" due to "CSC plasticity". A comprehensive understanding of CSC-derived heterogeneity will provide novel insights into the establishment of efficient targeting strategies to eliminate CSCs. Here, we introduce findings on mechanisms of CSC reprogramming and CSC plasticity, which give rise to phenotypically varied CSCs. Also, we suggest concepts to improve CSC-targeted therapy in order to overcome therapeutic resistance caused by CSC plasticity and heterogeneity.

Novel biological strategies to enhance the radiation therapeutic ratio

  • Kim, Jae Ho;Jenrow, Kenneth A.;Brown, Stephen L.
    • Radiation Oncology Journal
    • /
    • 제36권3호
    • /
    • pp.172-181
    • /
    • 2018
  • Successful anticancer strategies require a differential response between tumor and normal tissue (i.e., a therapeutic ratio). In fact, improving the effectiveness of a cancer therapeutic is of no clinical value in the absence of a significant increase in the differential response between tumor and normal tissue. Although radiation dose escalation with the use of intensity modulated radiation therapy has permitted the maximum tolerable dose for most locally advanced cancers, improvements in tumor control without damaging normal adjacent tissues are needed. As a means of increasing the therapeutic ratio, several new approaches are under development. Drugs targeting signal transduction pathways in cancer progression and more recently, immunotherapeutics targeting specific immune cell subsets have entered the clinic with promising early results. Radiobiological research is underway to address pressing questions as to the dose per fraction, irradiated tumor volume and time sequence of the drug administration. To exploit these exciting novel strategies, a better understanding is needed of the cellular and molecular pathways responsible for both cancer and normal tissue and organ response, including the role of radiation-induced accelerated senescence. This review will highlight the current understanding of promising biologically targeted therapies to enhance the radiation therapeutic ratio.

방사면역치료(II): 임상적 이용 (Radioimmunotherapy (II): Clinical Application)

  • 천기정;강혜진;임상무
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제40권2호
    • /
    • pp.74-81
    • /
    • 2006
  • Molecular targeting may be defined as the specific concentration of a diagnostic or therapeutic tracer by its Interaction with a molecular species that is distinctly present or absent in a disease state. Monoclonal antibody (mAb) is one of the successful agents for targeted therapy in cancer. To enhance the therapeutic effect, the concept of targeting radionuclides to tumors using radiolabeled mAbs against tumor-associated antigens, radioimmunotherapy, was proposed. The efficacy of radioimmunotherapy, however, has to be further optimized. Several strategies to improve targeting of tumors with radiolabeled mAbs have been developed, such as the use of mAb fragments, the use of high-affinity mAbs, the use of labeling techniques that are stable in vivo, active removal of the radiolabeled mAb from the circulation, and pretargeting strategies. Until now, however, there are many kinds of obstacles to be solved in the use of mAb for the targeted therapy. Major technical challenges to molecular targeting are related to the rapid and specific delivery of tracers to the target, the elimination of unwanted background activity, and the development of more specific targets to create a cytocidal effect. further development of this field will be determined by success in solving these challenges.

Preparation and stability of N-terminal PEGylated Recombinant Human Epidermal Growth Factor

  • Na, Dong-Hee;Youn, Yu-Seok;Park, Chong-Jeon;Lee, Sang-Deuk;Lee, Kang-Choon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.415.3-416
    • /
    • 2002
  • To improve the stability of recombinant human epidermal growth factor (rhEGF) as therapeutic agent. the N-terminal PEGylated rhEGF (N-PEG-rhEGF) was prepared by site-specific bioconjugation and the stability was investigated in rat skin wound homogenates. Two different N-PEG-rhGEFs (N-PEG5K- and N-PEG20K-rhEGF) were successfully prepared with the yields of above 70%. The PEGylation site was directly confirmed by determining the molecular mass of Lys-C digested samples using MALDI- TOF MS. (omitted)

  • PDF