Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.069

Modulation of Immunosuppression by Oligonucleotide-Based Molecules and Small Molecules Targeting Myeloid-Derived Suppressor Cells  

Lim, Jihyun (Department of Biological Science, Sookmyung Women's University)
Lee, Aram (Department of Biological Science, Sookmyung Women's University)
Lee, Hee Gu (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
Lim, Jong-Seok (Department of Biological Science, Sookmyung Women's University)
Publication Information
Biomolecules & Therapeutics / v.28, no.1, 2020 , pp. 1-17 More about this Journal
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exert suppressive function on the immune response. MDSCs expand in tumor-bearing hosts or in the tumor microenvironment and suppress T cell responses via various mechanisms, whereas a reduction in their activities has been observed in autoimmune diseases or infections. It has been reported that the symptoms of various diseases, including malignant tumors, can be alleviated by targeting MDSCs. Moreover, MDSCs can contribute to patient resistance to therapy using immune checkpoint inhibitors. In line with these therapeutic approaches, diverse oligonucleotide-based molecules and small molecules have been evaluated for their therapeutic efficacy in several disease models via the modulation of MDSC activity. In the current review, MDSC-targeting oligonucleotides and small molecules are briefly summarized, and we highlight the immunomodulatory effects on MDSCs in a variety of disease models and the application of MDSC-targeting molecules for immuno-oncologic therapy.
Keywords
Myeloid-derived suppressor cells (MDSCs); Oligonucleotide-based molecules; Small molecules; Tumor microenvironment; Immune suppression; MDSC-targeting agents;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wei, C., Wang, Y. X., Ma, L., Wang, X., Chi, H., Zhang, S., Liu, T., Li, Z. Y., Xiang, D. M., Dong, Y. L., Wu, X. G., Shi, W. Y. and Gao, H. (2018) Rapamycin nano-micelle ophthalmic solution reduces corneal allograft rejection by potentiating myeloid-derived suppressor cells' function. Front. Immunol. 9, 2283.   DOI
2 Xiao, L., Erb, U., Zhao, K., Hackert, T. and Zoller, M. (2017) Efficacy of vaccination with tumor-exosome loaded dendritic cells combined with cytotoxic drug treatment in pancreatic cancer. Oncoimmunology 6, e1319044.   DOI
3 Vonderheide, R. H. and Glennie, M. J. (2013) Agonistic CD40 antibodies and cancer therapy. Clin. Cancer Res. 19, 1035-1043.   DOI
4 Wang, S. H., Lu, Q. Y., Guo, Y. H., Song, Y. Y., Liu, P. J. and Wang, Y. C. (2016) The blockage of Notch signalling promoted the generation of polymorphonuclear myeloid-derived suppressor cells with lower immunosuppression. Eur. J. Cancer 68, 90-105.   DOI
5 Weed, D. T., Vella, J. L., Reis, I. M., De la Fuente, A. C., Gomez, C., Sargi, Z., Nazarian, R., Califano, J., Borrello, I. and Serafini, P. (2015) Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin. Cancer Res. 21, 39-48.   DOI
6 Clezardin, P., Ebetino, F. H. and Fournier, P. G. J. (2005) Bisphosphonates and cancer-induced bone disease: beyond their antiresorptive activity. Cancer Res. 65, 4971-4974.   DOI
7 Xu, Z., Ji, J. J., Xu, J. J., Li, D., Shi, G. P., Liu, F., Ding, L., Ren, J., Dou, H., Wang, T. T. and Hou, Y. Y. (2017) MiR-30a increases MDSC differentiation and immunosuppressive function by targeting SOCS3 in mice with B-cell lymphoma. FEBS J. 284, 2410-2424.   DOI
8 Yamaoka, T., Kusumoto, S., Ando, K., Ohba, M. and Ohmori, T. (2018) Receptor tyrosine kinase-targeted cancer therapy. Int. J. Mol. Sci. 19, 3491.   DOI
9 Chen, S. Q., Wang, L., Fan, J., Ye, C., Dominguez, D., Zhang, Y., Curiel, T. J., Fang, D. Y., Kuzel, T. M. and Zhang, B. (2015b) Host miR155 promotes tumor growth through a myeloid-derived suppressor cell-dependent mechanism. Cancer Res. 75, 519-531.   DOI
10 Cheng, P., Corzo, C. A., Luetteke, N., Yu, B., Nagaraj, S., Bui, M. M., Ortiz, M., Nacken, W., Sorg, C., Vogl, T., Roth, J. and Gabrilovich, D. I. (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J. Exp. Med. 205, 2235-2249.   DOI
11 Ghofrani, H. A., Voswinckel, R., Reichenberger, F., Olschewski, H., Haredza, P., Karadas, B., Schermuly, R. T., Weissmann, N., Seeger, W. and Grimminger, F. (2004) Differences in hemodynamic and oxygenation responses to three different phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension: a randomized prospective study. J. Am. Coll. Cardiol. 44, 1488-1496.   DOI
12 Cushing, T. D., Metz, D. P., Whittington, D. A. and McGee, L. R. (2012) PI3Kdelta and PI3Kgamma as targets for autoimmune and inflammatory diseases. J. Med. Chem. 55, 8559-8581.   DOI
13 Davis, R. J., Moore, E. C., Clavijo, P. E., Friedman, J., Cash, H., Chen, Z., Silvin, C., Van Waes, C. and Allen, C. (2017) Anti-PD-L1 efficacy can be enhanced by inhibition of myeloid-derived suppressor cells with a selective inhibitor of PI3K delta/gamma. Cancer Res. 77, 2607-2619.   DOI
14 Deng, Y. T., Yang, J., Luo, F. F., Qian, J., Liu, R. H., Zhang, D., Yu, H. X. and Chu, Y. W. (2018) mTOR-mediated glycolysis contributes to the enhanced suppressive function of murine tumor-infiltrating monocytic myeloid-derived suppressor cells. Cancer Immunol. Immunother. 67, 1355-1364.   DOI
15 Doedens, A. L., Stockmann, C., Rubinstein, M. P., Liao, D., Zhang, N., DeNardo, D. G., Coussens, L. M., Karin, M., Goldrath, A. W. and Johnson, R. S. (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res. 70, 7465-7475.   DOI
16 Zhang, S., Wu, K., Liu, Y., Lin, Y., Zhang, X., Zhou, J., Zhang, H., Pan, T. and Fu, Y. (2016) Finasteride enhances the generation of human myeloid-derived suppressor cells by up-regulating the COX2/PGE2 pathway. PLoS ONE 11, e0156549.   DOI
17 Zhang, X. H., Fang, X. Y., Gao, Z. Z., Chen, W., Tao, F. F., Cai, P. F., Yuan, H. Q., Shu, Y. Q., Xu, Q., Sun, Y. and Gu, Y. H. (2014) Axitinib, a selective inhibitor of vascular endothelial growth factor receptor, exerts an anticancer effect in melanoma through promoting antitumor immunity. Anticancer Drugs 25, 204-211.   DOI
18 Freston, J. W. (1982) Cimetidine. I. Developments, pharmacology, and efficacy. Ann. Intern. Med. 97, 573-580.   DOI
19 Gabrilovich, D. I. and Nagaraj, S. (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162-174.   DOI
20 Gabrilovich, D. I., Ostrand-Rosenberg, S. and Bronte, V. (2012) Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253-268.   DOI
21 Grauers Wiktorin, H., Nilsson, M. S., Kiffin, R., Sander, F. E., Lenox, B., Rydstrom, A., Hellstrand, K. and Martner, A. (2018) Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade. Cancer Immunol. Immunother. 68, 163-174.
22 Greenwood, J., Steinman, L. and Zamvil, S. S. (2006) Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat. Rev. Immunol. 6, 358-370.   DOI
23 Engelman, J. A. (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550-562.   DOI
24 Draghiciu, O., Nijman, H. W., Hoogeboom, B. N., Meijerhof, T. and Daemen, T. (2015) Sunitinib depletes myeloid-derived suppressor cells and synergizes with a cancer vaccine to enhance antigenspecific immune responses and tumor eradication. Oncoimmunology 4, e989764.   DOI
25 Du Four, S., Maenhout, S. K., De Pierre, K., Renmans, D., Niclou, S. P., Thielemans, K., Neyns, B. and Aerts, J. L. (2015) Axitinib increases the infiltration of immune cells and reduces the suppressive capacity of monocytic MDSCs in an intracranial mouse melanoma model. Oncoimmunology 4, e998107.   DOI
26 El Gazzar, M. (2014) microRNAs as potential regulators of myeloidderived suppressor cell expansion. Innate Immunity 20, 227-238.   DOI
27 Eriksson, E., Wenthe, J., Irenaeus, S., Loskog, A. and Ullenhag, G. (2016) Gemcitabine reduces MDSCs, tregs and TGF beta-1 while restoring the teff/treg ratio in patients with pancreatic cancer. J. Transl. Med. 14, 282.   DOI
28 Espagnolle, N., Barron, P., Mandron, M., Blanc, I., Bonnin, J., Agnel, M., Kerbelec, E., Herault, J. P., Savi, P., Bono, F. and Alam, A. (2014) Specific inhibition of the VEGFR-3 tyrosine kinase by SAR131675 reduces peripheral and tumor associated immunosuppressive myeloid cells. Cancers (Basel) 6, 472-490.   DOI
29 Finke, J., Ko, J., Rini, B., Rayman, P., Ireland, J. and Cohen, P. (2011) MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int. Immunopharm. 11, 856-861.   DOI
30 Groth, C., Hu, X., Weber, R., Fleming, V., Altevogt, P., Utikal, J. and Umansky, V. (2018) Immunosuppression mediated by myeloidderived suppressor cells (MDSCs) during tumour progression. Br. J. Cancer 120, 16-25.
31 Guha, P., Gardell, J., Darpolor, J., Cunetta, M., Lima, M., Miller, G., Espat, N. J., Junghans, R. P. and Katz, S. C. (2019) STAT3 inhibition induces Bax-dependent apoptosis in liver tumor myeloid-derived suppressor cells. Oncogene 38, 533-548.   DOI
32 Zhao, Y., Shao, Q., Zhu, H., Xu, H., Long, W., Yu, B., Zhou, L., Xu, H., Wu, Y. and Su, Z. (2018a) Resveratrol ameliorates Lewis lung carcinoma-bearing mice development, decreases granulocytic myeloid-derived suppressor cell accumulation and impairs its suppressive ability. Cancer Sci. 109, 2677-2686.   DOI
33 Zhao, Y., Shen, X. F., Cao, K., Ding, J., Kang, X., Guan, W. X., Ding, Y. T., Liu, B. R. and Du, J. F. (2018b) Dexamethasone-induced myeloid-derived suppressor cells prolong allo cardiac graft survival through iNOS-and glucocorticoid receptor-dependent mechanism. Front. Immunol. 9, 282.   DOI
34 Zheng, Y. S., Xu, M., Li, X., Jia, J. P., Fan, K. X. and Lai, G. X. (2013) Cimetidine suppresses lung tumor growth in mice through proapoptosis of myeloid-derived suppressor cells. Mol. Immunol. 54, 74-83.   DOI
35 Zilio, S., Vella, J. L., De la Fuente, A. C., Daftarian, P. M., Weed, D. T., Kaifer, A., Marigo, I., Leone, K., Bronte, V. and Serafini, P. (2017) 4PD functionalized dendrimers: a flexible tool for in vivo gene silencing of tumor-educated myeloid cells. J. Immunol. 198, 4166-4177.   DOI
36 Zoglmeier, C., Bauer, H., Noerenberg, D., Wedekind, G., Bittner, P., Sandholzer, N., Rapp, M., Anz, D., Endres, S. and Bourquin, C. (2011) CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin. Cancer Res. 17, 1765-1775.   DOI
37 Yoyen-Ermis, D., Ozturk-Atar, K., Kursunel, M. A., Aydin, C., Ozkazanc, D., Gurbuz, M. U., Uner, A., Tulu, M., Calis, S. and Esendagli, G. (2018) Tumor-induced myeloid cells are reduced by gemcitabineloaded PAMAM dendrimers decorated with anti-Flt1 antibody. Mol. Pharm. 15, 1526-1533.   DOI
38 Guislain, A., Gadiot, J., Kaiser, A., Jordanova, E. S., Broeks, A., Sanders, J., van Boven, H., de Gruijl, T. D., Haanen, J. B., Bex, A. and Blank, C. U. (2015) Sunitinib pretreatment improves tumor-infiltrating lymphocyte expansion by reduction in intratumoral content of myeloid-derived suppressor cells in human renal cell carcinoma. Cancer Immunol. Immunother. 64, 1241-1250.   DOI
39 Flaxenburg, J. A., Melter, M., Lapchak, P. H., Briscoe, D. M. and Pal, S. (2004) The CD40-induced signaling pathway in endothelial cells resulting in the overexpression of vascular endothelial growth factor involves Ras and phosphatidylinositol 3-kinase. J. Immunol. 172, 7503-7509.   DOI
40 Yan, D. H., Yang, Q., Shi, M. H., Zhong, L. M., Wu, C. Y., Meng, T., Yin, H. Y. and Zhou, J. (2013) Polyunsaturated fatty acids promote the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway. Eur. J. Immunol. 43, 2943-2955.   DOI
41 Yu, H. and Jove, R. (2004) The STATs of cancer--new molecular targets come of age. Nat. Rev. Cancer 4, 97-105.   DOI
42 Yun, T. K. (2001) Brief introduction of Panax ginseng C.A. Meyer. J. Kor. Med. Sci. 16, S3.   DOI
43 Zhang, C., Wang, S., Li, J. W., Zhang, W. T., Zheng, L., Yang, C., Zhu, T. Y. and Rong, R. M. (2017) The mTOR signal regulates myeloidderived suppressor cells differentiation and immunosuppressive function in acute kidney injury. Cell Death Dis. 8, e2695.   DOI
44 Zhang, M. M., Liu, Q. F., Mi, S. P., Liang, X., Zhang, Z. Q., Su, X. M., Liu, J. Y., Chen, Y. Y., Wang, M. M., Zhang, Y. A., Guo, F. H., Zhang, Z. J. and Yang, R. C. (2011) Both miR-17-5p and miR-20a alleviate suppressive potential of myeloid-derived suppressor cells by modulating STAT3 expression. J. Immunol. 186, 4716-4724.   DOI
45 Hegde, V. L., Tomar, S., Jackson, A., Rao, R., Yang, X., Singh, U. P., Singh, N. P., Nagarkatti, P. S. and Nagarkatti, M. (2013) Distinct microRNA expression profile and targeted biological pathways in functional myeloid-derived suppressor cells induced by delta9-tetrahydrocannabinol in vivo: regulation of CCAAT/enhancer-binding protein alpha by microRNA-690. J. Biol. Chem. 288, 36810-36826.   DOI
46 Winkler, D. G., Faia, K. L., DiNitto, J. P., Ali, J. A., White, K. F., Brophy, E. E., Pink, M. M., Proctor, J. L., Lussier, J., Martin, C. M., Hoyt, J. G., Tillotson, B., Murphy, E. L., Lim, A. R., Thomas, B. D., Macdougall, J. R., Ren, P., Liu, Y., Li, L. S., Jessen, K. A., Fritz, C. C., Dunbar, J. L., Porter, J. R., Rommel, C., Palombella, V. J., Changelian, P. S. and Kutok, J. L. (2013) PI3K-delta and PI3K-gamma inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem. Biol. 20, 1364-1374.   DOI
47 Guo, X., Qiu, W., Wang, J., Liu, Q., Qian, M., Wang, S., Zhang, Z., Gao, X., Chen, Z., Guo, Q., Xu, J., Xue, H. and Li, G. (2018a) Glioma exosomes mediate the expansion and function of myeloid-derived suppressor cells through microRNA-29a/Hbp1 and microRNA-92a/ Prkar1a pathways. Int. J. Cancer 144, 3111-3126.   DOI
48 Guo, X. F., Qiu, W., Liu, Q. L., Qian, M. Y., Wang, S. B., Zhang, Z. P., Gao, X., Chen, Z. H., Xue, H. and Li, G. (2018b) Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloidderived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways. Oncogene 37, 4239-4259.   DOI
49 Hara, E., Smith, R., Parry, D., Tahara, H., Stone, S. and Peters, G. (1996) Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol. Cell. Biol. 16, 859-867.   DOI
50 Hashimoto, A., Gao, C., Mastio, J., Kossenkov, A., Abrams, S. I., Purandare, A. V., Desilva, H., Wee, S., Hunt, J., Jure-Kunkel, M. and Gabrilovich, D. I. (2018) Inhibition of casein kinase 2 disrupts differentiation of myeloid cells in cancer and enhances the efficacy of immunotherapy in mice. Cancer Res. 78, 5644-5655.   DOI
51 Hossain, F., Majumder, S., Ucar, D. A., Rodriguez, P. C., Golde, T. E., Minter, L. M., Osborne, B. A. and Miele, L. (2018) Notch signaling in myeloid cells as a regulator of tumor immune responses. Front. Immunol. 9, 1288.   DOI
52 Hou, Y., Feng, Q., Xu, M., Li, G. S., Liu, X. N., Sheng, Z., Zhou, H., Ma, J., Wei, Y., Sun, Y. X., Yu, Y. Y., Qiu, J. H., Shao, L. L., Liu, X. G., Hou, M. and Peng, J. (2016) High-dose dexamethasone corrects impaired myeloid-derived suppressor cell function via Ets1 in immune thrombocytopenia. Blood 127, 1587-1597.   DOI
53 Huang, A. F., Zhang, H. T., Chen, S., Xia, F., Yang, Y., Dong, F. L., Sun, D., Xiong, S. D. and Zhang, J. P. (2014) miR-34a expands myeloid-derived suppressor cells via apoptosis inhibition. Exp. Cell Res. 326, 259-266.   DOI
54 Heine, A., Flores, C., Gevensleben, H., Diehl, L., Heikenwalder, M., Ringelhan, M., Janssen, K.-P., Nitsche, U., Garbi, N., Brossart, P., Knolle, P. A., Kurts, C. and Hochst, B. (2017) Targeting myeloid derived suppressor cells with all-trans retinoic acid is highly timedependent in therapeutic tumor vaccination. Oncoimmunology 6, e1338995.   DOI
55 Heine, A., Schilling, J., Grunwald, B., Kruger, A., Gevensleben, H., Held, S. A. E., Garbi, N., Kurts, C., Brossart, P., Knolle, P., Diehl, L. and Hochst, B. (2016) The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib. Cancer Immunol. Immunother. 65, 273-282.   DOI
56 Hojjat-Farsangi, M. (2014) Small-molecule inhibitors of the receptor tyrosine kinases: promising tools for targeted cancer therapies. Int. J. Mol. Sci. 15, 13768-13801.   DOI
57 Moon, Y. W., Hajjar, J., Hwu, P. and Naing, A. (2015) Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J. Immunother. Cancer 3, 51.   DOI
58 McClure, C., Brudecki, L., Ferguson, D. A., Yao, Z. Q., Moorman, J. P., McCall, C. E. and El Gazzar, M. (2014) MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis. Infect. Immun. 82, 3816-3825.   DOI
59 Melani, C., Sangaletti, S., Barazzetta, F. M., Werb, Z. and Colombo, M. P. (2007) Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 67, 11438-11446.   DOI
60 Mikyskova, R., Indrova, M., Vlkova, V., Bieblova, J., Simova, J., Parackova, Z., Pajtasz-Piasecka, E., Rossowska, J. and Reinis, M. (2014) DNA demethylating agent 5-azacytidine inhibits myeloidderived suppressor cells induced by tumor growth and cyclophosphamide treatment. J. Leukoc. Biol. 95, 743-753.   DOI
61 Motzer, R. J., Rini, B. I., Bukowski, R. M., Curti, B. D., George, D. J., Hudes, G. R., Redman, B. G., Margolin, K. A., Merchan, J. R., Wilding, G., Ginsberg, M. S., Bacik, J., Kim, S. T., Baum, C. M. and Michaelson, M. D. (2006) Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295, 2516-2524.   DOI
62 Nakamura, T., Nakao, T., Yoshimura, N. and Ashihara, E. (2015) Rapamycin prolongs cardiac allograft survival in a mouse model by inducing myeloid-derived suppressor cells. Am. J. Transplant. 15, 2364-2377.   DOI
63 Nam, S., Kang, K., Cha, J. S., Kim, J. W., Lee, H. G., Kim, Y., Yang, Y., Lee, M. S. and Lim, J. S. (2016) Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function. J. Leukoc. Biol. 100, 1273-1284.   DOI
64 Nefedova, Y., Nagaraj, S., Rosenbauer, A., Muro-Cacho, C., Sebti, S. M. and Gabrilovich, D. I. (2005) Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res. 65, 9525-9535.   DOI
65 Nam, S., Lee, A., Lim, J. and Lim, J.-S. (2019) Analysis of the expression and regulation of PD-1 protein on the surface of myeloid-derived suppressor cells (MDSCs). Biomol. Ther. (Seoul) 27, 63-70.   DOI
66 Nandi, P., Girish, G. V., Majumder, M., Xin, X., Tutunea-Fatan, E. and Lala, P. K. (2017) PGE2 promotes breast cancer-associated lymphangiogenesis by activation of EP4 receptor on lymphatic endothelial cells. BMC Cancer 17, 11.   DOI
67 Nefedova, Y., Fishman, M., Sherman, S., Wang, X., Beg, A. A. and Gabrilovich, D. I. (2007) Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res. 67, 11021-11028.   DOI
68 Nishimura, K., Saegusa, J., Matsuki, F., Akashi, K., Kageyama, G. and Morinobu, A. (2015) Tofacitinib facilitates the expansion of myeloidderived suppressor cells and ameliorates arthritis in SKG mice. Arthritis Rheumatol. 67, 893-902.   DOI
69 Noman, M. Z., Janji, B., Hu, S., Wu, J. C., Martelli, F., Bronte, V. and Chouaib, S. (2015) Tumor-promoting effects of myeloid-derived suppressor cells are potentiated by hypoxia-induced expression of miR-210. Cancer Res. 75, 3771-3787.   DOI
70 Noonan, K. A., Ghosh, N., Rudraraju, L., Bui, M. and Borrello, I. (2014) Targeting immune suppression with PDE5 inhibition in end-stage multiple myeloma. Cancer Immunol. Res. 2, 725-731.   DOI
71 O’Neill, L. A. J. and Hardie, D. G. (2013) Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493, 346-355.   DOI
72 Capuano, G., Rigamonti, N., Grioni, M., Freschi, M. and Bellone, M. (2009) Modulators of arginine metabolism support cancer immunosurveillance. BMC Immunol. 10, 1.   DOI
73 Borriello, F., Iannone, R. and Marone, G. (2017) Histamine release from mast cells and basophils. Handb. Exp. Pharmacol. 241, 121-139.   DOI
74 Bu, L. L., Yu, G. T., Deng, W. W., Mao, L., Liu, J. F., Ma, S. R., Fan, T. F., Hall, B., Kulkarni, A. B., Zhang, W. F. and Sun, Z. J. (2016) Targeting STAT3 signaling reduces immunosuppressive myeloid cells in head and neck squamous cell carcinoma. Oncoimmunology 5, e1130206.   DOI
75 Califano, J. A., Khan, Z., Noonan, K. A., Rudraraju, L., Zhang, Z., Wang, H., Goodman, S., Gourin, C. G., Ha, P. K., Fakhry, C., Saunders, J., Levine, M., Tang, M., Neuner, G., Richmon, J. D., Blanco, R., Agrawal, N., Koch, W. M., Marur, S., Weed, D. T., Serafini, P. and Borrello, I. (2015) Tadalafil augments tumor specific immunity in patients with head and neck squamous cell carcinoma. Clin. Cancer Res. 21, 30-38.   DOI
76 Cantoni, C., Cignarella, F., Ghezzi, L., Mikesell, B., Bollman, B., Berrien-Elliott, M. M., Ireland, A. R., Fehniger, T. A., Wu, G. F. and Piccio, L. (2017) Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol. 133, 61-77.   DOI
77 Cao, M. D., Xu, Y. L., Youn, J. I., Cabrera, R., Zhang, X. K., Gabrilovich, D., Nelson, D. R. and Liu, C. (2011) Kinase inhibitor Sorafenib modulates immunosuppressive cell populations in a murine liver cancer model. Lab. Invest. 91, 598-608.   DOI
78 Cashen, A. F., Schiller, G. J., O'Donnell, M. R. and DiPersio, J. F. (2010) Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. J. Clin. Oncol. 28, 556-561.   DOI
79 Serafini, P., Meckel, K., Kelso, M., Noonan, K., Califano, J., Koch, W., Dolcetti, L., Bronte, V. and Borrello, I. (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med. 203, 2691-2702.   DOI
80 Scuto, A., Krejci, P., Popplewell, L., Wu, J., Wang, Y., Kujawski, M., Kowolik, C., Xin, H., Chen, L., Wang, Y., Kretzner, L., Yu, H., Wilcox, W. R., Yen, Y., Forman, S. and Jove, R. (2011) The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival. Leukemia 25, 538-550.   DOI
81 Setten, R. L., Rossi, J. J. and Han, S. P. (2019) The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 18, 421-446.   DOI
82 Shen, L., Orillion, A. and Pili, R. (2016) Histone deacetylase inhibitors as immunomodulators in cancer therapeutics. Epigenomics 8, 415-428.   DOI
83 Shi, G., Li, D., Ren, J., Li, X., Wang, T., Dou, H. and Hou, Y. (2019) mTOR inhibitor INK128 attenuates dextran sodium sulfate-induced colitis by promotion of MDSCs on Treg cell expansion. J. Cell. Physiol. 234, 1618-1629.   DOI
84 Shirota, Y., Shirota, H. and Klinman, D. M. (2012) Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J. Immunol. 188, 1592-1599.   DOI
85 Singh, U. P., Singh, N. P., Singh, B., Hofseth, L. J., Taub, D. D., Price, R. L., Nagarkatti, M. and Nagarkatti, P. S. (2012) Role of resveratrol-induced CD11b(+) Gr-1(+) myeloid derived suppressor cells (MDSCs) in the reduction of CXCR3(+) T cells and amelioration of chronic colitis in IL-10(-/-) mice. Brain Behav. Immun. 26, 72-82.   DOI
86 Chen, S., Huang, A., Chen, H., Yang, Y., Xia, F., Jin, L. and Zhang, J. (2016) miR-34a inhibits the apoptosis of MDSCs by suppressing the expression of N-myc. Immunol. Cell Biol. 94, 563-572.   DOI
87 Sinha, P., Clements, V. K., Fulton, A. M. and Ostrand-Rosenberg, S. (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 67, 4507-4513.   DOI
88 Chang, C. J., Yang, Y. H., Chiu, C. J., Lu, L. C., Liao, C. C., Liang, C. W., Hsu, C. H. and Cheng, A. L. (2018) Targeting tumor-infiltrating Ly6G(+) myeloid cells improves sorafenib efficacy in mouse orthotopic hepatocellular carcinoma. Int. J. Cancer 142, 1878-1889.   DOI
89 Changelian, P. S., Flanagan, M. E., Ball, D. J., Kent, C. R., Magnuson, K. S., Martin, W. H., Rizzuti, B. J., Sawyer, P. S., Perry, B. D., Brissette, W. H., McCurdy, S. P., Kudlacz, E. M., Conklyn, M. J., Elliott, E. A., Koslov, E. R., Fisher, M. B., Strelevitz, T. J., Yoon, K., Whipple, D. A., Sun, J., Munchhof, M. J., Doty, J. L., Casavant, J. M., Blumenkopf, T. A., Hines, M., Brown, M. F., Lillie, B. M., Subramanyam, C., Shang-Poa, C., Milici, A. J., Beckius, G. E., Moyer, J. D., Su, C., Woodworth, T. G., Gaweco, A. S., Beals, C. R., Littman, B. H., Fisher, D. A., Smith, J. F., Zagouras, P., Magna, H. A., Saltarelli, M. J., Johnson, K. S., Nelms, L. F., Des Etages, S. G., Hayes, L. S., Kawabata, T. T., Finco-Kent, D., Baker, D. L., Larson, M., Si, M. S., Paniagua, R., Higgins, J., Holm, B., Reitz, B., Zhou, Y. J., Morris, R. E., O’Shea, J. J. and Borie, D. C. (2003) Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302, 875-878.   DOI
90 Chen, J., Deng, C. Y., Shi, Q. M., Jiang, J., Zhang, Y. B., Shan, W. and Sun, W. M. (2013) CpG oligodeoxynucleotide induces bone marrow precursor cells into myeloid-derived suppressor cells. Mol. Med. Rep. 8, 1149-1154.   DOI
91 Chen, S., Zhang, Y., Kuzel, T. M. and Zhang, B. (2015a) Regulating tumor myeloid-derived suppressor cells by microRNAs. Cancer Cell Microenviron. 2, e637.
92 Sinha, P., Okoro, C., Foell, D., Freeze, H. H., Ostrand-Rosenberg, S. and Srikrishna, G. (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J. Immunol. 181, 4666-4675.   DOI
93 Trikha, P., Plews, R. L., Stiff, A., Gautam, S., Hsu, V., Abood, D., Wesolowski, R., Landi, I., Mo, X., Phay, J., Chen, C.-S., Byrd, J., Caligiuri, M., Tridandapani, S. and Carson, W. E. (2016) Targeting myeloid-derived suppressor cells using a novel adenosine monophosphate-activated protein kinase (AMPK) activator. Oncoimmunology 5, e1214787.   DOI
94 Soong, R. S., Anchoori, R. K., Yang, B., Yang, A., Tseng, S. H., He, L. M., Tsai, Y. C., Roden, R. B. S. and Hung, C. F. (2016) RPN13/ADRM1 inhibitor reverses immunosuppression by myeloid-derived suppressor cells. Oncotarget 7, 68489-68502.   DOI
95 Suzuki, E. (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11, 6713-6721.   DOI
96 Tobin, R. P., Jordan, K. R., Robinson, W. A., Davis, D., Borges, V. F., Gonzalez, R., Lewis, K. D. and McCarter, M. D. (2018) Targeting myeloid-derived suppressor cells using all-trans retinoic acid in melanoma patients treated with Ipilimumab. Int. Immunopharm. 63, 282-291.   DOI
97 van Hooren, L., Georganaki, M., Huang, H., Mangsbo, S. M. and Dimberg, A. (2016) Sunitinib enhances the antitumor responses of agonistic CD40-antibody by reducing MDSCs and synergistically improving endothelial activation and T-cell recruitment. Oncotarget 7, 50277-50289.   DOI
98 Veltman, J. D., Lambers, M. E. H., van Nimwegen, M., Hendriks, R. W., Hoogsteden, H. C., Aerts, J. G. J. V. and Hegmans, J. P. J. J. (2010) COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer 10, 464.   DOI
99 Orillion, A., Hashimoto, A., Damayanti, N., Shen, L., Adelaiye-Ogala, R., Arisa, S., Chintala, S., Ordentlich, P., Kao, C., Elzey, B., Gabrilovich, D. and Pili, R. (2017) Entinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinoma. Clin. Cancer Res. 23, 5187-5201.   DOI
100 Okuma, A., Hanyu, A., Watanabe, S. and Hara, E. (2017) p16(Ink4a) and p21(Cip1/Waf1) promote tumour growth by enhancing myeloid-derived suppressor cells chemotaxis. Nat. Commun. 8, 2050.   DOI
101 Orucevic, A., Bechberger, J., Green, A. M., Shapiro, R. A., Billiar, T. R. and Lala, P. K. (1999) Nitric-oxide production by murine mammary adenocarcinoma cells promotes tumor-cell invasiveness. Int. J. Cancer 81, 889-896.   DOI
102 Pan, P. Y., Ma, G., Weber, K. J., Ozao-Choy, J., Wang, G., Yin, B., Divino, C. M. and Chen, S. H. (2010) Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res. 70, 99-108.   DOI
103 Azoury, S. C., Gilmore, R. C. and Shukla, V. (2016) Molecularly targeted agents and immunotherapy for the treatment of head and neck squamous cell cancer (HNSCC). Discov. Med. 21, 507-516.
104 Pan, T., Zhong, L., Wu, S., Cao, Y., Yang, Q., Cai, Z., Cai, X., Zhao, W., Ma, N., Zhang, W., Zhang, H. and Zhou, J. (2016) 17-Oestradiol enhances the expansion and activation of myeloid-derived suppressor cells via signal transducer and activator of transcription (STAT)-3 signalling in human pregnancy. Clin. Exp. Immunol. 185, 86-97.   DOI
105 Piazza, F., Manni, S., Ruzzene, M., Pinna, L. A., Gurrieri, C. and Semenzato, G. (2012) Protein kinase CK2 in hematologic malignancies: reliance on a pivotal cell survival regulator by oncogenic signaling pathways. Leukemia 26, 1174-1179.   DOI
106 Qin, G., Lian, J., Huang, L., Zhao, Q., Liu, S., Zhang, Z., Chen, X., Yue, D., Li, L., Li, F., Wang, L., Umansky, V., Zhang, B., Yang, S. and Zhang, Y. (2018) Metformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axis. Oncoimmunology 7, e1442167.   DOI
107 Abraham, S. M., Lawrence, T., Kleiman, A., Warden, P., Medghalchi, M., Tuckermann, J., Saklatvala, J. and Clark, A. R. (2006) Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J. Exp. Med. 203, 1883-1889.   DOI
108 Ali, K., Soond, D. R., Pineiro, R., Hagemann, T., Pearce, W., Lim, E. L., Bouabe, H., Scudamore, C. L., Hancox, T., Maecker, H., Friedman, L., Turner, M., Okkenhaug, K. and Vanhaesebroeck, B. (2014) Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 510, 407-411.   DOI
109 Anchoori, R. K., Karanam, B., Peng, S., Wang, J. W., Jiang, R., Tanno, T., Orlowski, R. Z., Matsui, W., Zhao, M., Rudek, M. A., Hung, C. F., Chen, X., Walters, K. J. and Roden, R. B. (2013) A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell 24, 791-805.   DOI
110 Arguello, F., Alexander, M., Sterry, J. A., Tudor, G., Smith, E. M., Kalavar, N. T., Greene, J. F., Jr., Koss, W., Morgan, C. D., Stinson, S. F., Siford, T. J., Alvord, W. G., Klabansky, R. L. and Sausville, E. A. (1998) Flavopiridol induces apoptosis of normal lymphoid cells, causes immunosuppression, and has potent antitumor activity In vivo against human leukemia and lymphoma xenografts. Blood 91, 2482-2490.
111 Bauer, R., Udonta, F., Wroblewski, M., Ben-Batalla, I., Santos, I. M., Taverna, F., Kuhlencord, M., Gensch, V., Pasler, S., Vinckier, S., Brandner, J. M., Pantel, K., Bokemeyer, C., Vogl, T., Roth, J., Carmeliet, P. and Loges, S. (2018) Blockade of myeloid-derived suppressor cell expansion with all-trans retinoic acid increases the efficacy of anti-angiogenic therapy. Cancer Res. 78, 3230-3232.
112 Rodriguez, P. C., Hernandez, C. P., Quiceno, D., Dubinett, S. M., Zabaleta, J., Ochoa, J. B., Gilbert, J. and Ochoa, A. C. (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J. Exp. Med. 202, 931-939.   DOI
113 Rong, Y., Yuan, C. H., Qu, Z., Zhou, H., Guan, Q., Yang, N., Leng, X. H., Bu, L., Wu, K. and Wang, F. B. (2016) Doxorubicin resistant cancer cells activate myeloid-derived suppressor cells by releasing PGE2. Sci. Rep. 6, 23824.   DOI
114 Schmid, M. C., Avraamides, C. J., Dippold, H. C., Franco, I., Foubert, P., Ellies, L. G., Acevedo, L. M., Manglicmot, J. R., Song, X., Wrasidlo, W., Blair, S. L., Ginsberg, M. H., Cheresh, D. A., Hirsch, E., Field, S. J. and Varner, J. A. (2011) Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell 19, 715-727.   DOI
115 Roskoski, R., Jr. (2007) Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem. Biophys. Res. Commun. 356, 323-328.   DOI
116 Sawant, A., Schafer, C. C., Jin, T. H., Zmijewski, J., Tse, H. M., Roth, J., Sun, Z. H., Siegal, G. P., Thannickal, V. J., Grant, S. C., Ponnazhagan, S. and Deshane, J. S. (2013) Enhancement of antitumor immunity in lung cancer by targeting myeloid-derived suppressor cell pathways. Cancer Res. 73, 6609-6620.   DOI
117 Schacke, H., Docke, W. D. and Asadullah, K. (2002) Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 96, 23-43.   DOI
118 Schwartz, D. M., Kanno, Y., Villarino, A., Ward, M., Gadina, M. and O'Shea, J. J. (2017) JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 17, 78.
119 Jeon, C., Kang, S., Park, S., Lim, K., Hwang, K. W. and Min, H. (2011) T cell stimulatory effects of Korean red ginseng through modulation of myeloid-derived suppressor cells. J. Ginseng Res. 35, 462-470.   DOI
120 Huber, V., Vallacchi, V., Fleming, V., Hu, X., Cova, A., Dugo, M., Shahaj, E., Sulsenti, R., Vergani, E., Filipazzi, P., De Laurentiis, A., Lalli, L., Di Guardo, L., Patuzzo, R., Vergani, B., Casiraghi, E., Cossa, M., Gualeni, A., Bollati, V., Arienti, F., De Braud, F., Mariani, L., Villa, A., Altevogt, P., Umansky, V., Rodolfo, M. and Rivoltini, L. (2018) Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. J. Clin. Invest. 128, 5505-5516.   DOI
121 Kim, S. H., Li, M., Trousil, S., Zhang, Y., Pasca di Magliano, M., Swanson, K. D. and Zheng, B. (2017) Phenformin inhibits myeloid-derived suppressor cells and enhances the anti-tumor activity of PD-1 blockade in melanoma. J. Invest. Dermatol. 137, 1740-1748.   DOI
122 Kostlin, N., Kugel, H., Spring, B., Leiber, A., Marme, A., Henes, M., Rieber, N., Hartl, D., Poets, C. F. and Gille, C. (2014) Granulocytic myeloid derived suppressor cells expand in human pregnancy and modulate T-cell responses. Eur. J. Immunol. 44, 2582-2591.   DOI
123 Kanasty, R., Dorkin, J. R., Vegas, A. and Anderson, D. (2013) Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967-977.   DOI
124 Kim, K., Skora, A. D., Li, Z. B., Liu, Q., Tam, A. J., Blosser, R. L., Diaz, L. A., Papadopoulos, N., Kinzler, K. W., Vogelstein, B. and Zhou, S. B. (2014) Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc. Natl. Acad. Sci. U.S.A. 111, 11774-11779.   DOI
125 Klinman, D. M. (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol. 4, 249-259.   DOI
126 Kremmyda, L.-S., Tvrzicka, E., Stankova, B. and Zak, A. (2011) Fatty acids as biocompounds: their role in human metabolism, health and disease: a review. part 2: fatty acid physiological roles and applications in human health and disease. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 155, 195-218.   DOI
127 Ko, H. J. and Kim, Y. J. (2016) Signal transducer and activator of transcription proteins: regulators of myeloid-derived suppressor cellmediated immunosuppression in cancer. Arch. Pharm. Res. 39, 1597-1608.   DOI
128 Ko, J. S., Rayman, P., Ireland, J., Swaidani, S., Li, G. Q., Bunting, K. D., Rini, B., Finke, J. H. and Cohen, P. A. (2010) Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 70, 3526-3536.   DOI
129 Ko, J. S., Zea, A. H., Rin, B. I., Ireland, J. L., Elson, P., Cohen, P., Golshayan, A., Rayman, P. A., Wood, L., Garcia, J., Dreicer, R., Bukowski, R. and Finke, J. H. (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15, 2148-2157.   DOI
130 Kuchen, S., Resch, W., Yamane, A., Kuo, N., Li, Z., Chakraborty, T., Wei, L., Laurence, A., Yasuda, T., Peng, S., Hu-Li, J., Lu, K., Dubois, W., Kitamura, Y., Charles, N., Sun, H. W., Muljo, S., Schwartzberg, P. L., Paul, W. E., O’Shea, J., Rajewsky, K. and Casellas, R. (2010) Regulation of microRNA expression and abundance during lymphopoiesis. Immunity 32, 828-839.   DOI
131 Ledo, A. M., Sasso, M. S., Bronte, V., Marigo, I., Boyd, B. J., Garcia-Fuentes, M. and Alonso, M. J. (2018) Co-delivery of RNAi and chemokine by polyarginine nanocapsules enables the modulation of myeloid-derived suppressor cells. J. Control. Release 295, 60-73.   DOI
132 Li, J., Yu, S., Ying, J., Shi, T. and Wang, P. (2017) Resveratrol prevents ROS-induced apoptosis in high glucose-treated retinal capillary endothelial cells via the activation of AMPK/Sirt1/PGC-$1{\alpha}$ pathway. Oxid. Med. Cell. Longev. 2017, 7584691.   DOI
133 Lee, B. R., Kwon, B. E., Hong, E. H., Shim, A., Song, J. H., Kim, H. M., Chang, S. Y., Kim, Y. J., Kweon, M. N., Youn, J. I. and Ko, H. J. (2016) Interleukin-10 attenuates tumour growth by inhibiting interleukin-6/signal transducer and activator of transcription 3 signalling in myeloid-derived suppressor cells. Cancer Lett. 381, 156-164.   DOI
134 Lei, A., Yang, Q., Li, X., Chen, H., Shi, M., Xiao, Q., Cao, Y., He, Y. and Zhou, J. (2016) Atorvastatin promotes the expansion of myeloidderived suppressor cells and attenuates murine colitis. Immunology 149, 432-446.   DOI
135 Li, A., Barsoumian, H. B., Schoenhals, J. E., Cushman, T. R., Caetano, M. S., Wang, X., Valdecanas, D. R., Niknam, S., Younes, A. I., Li, G., Woodward, W. A., Cortez, M. A. and Welsh, J. W. (2018a) Indoleamine 2,3-dioxygenase 1 inhibition targets anti-PD1-resistant lung tumors by blocking myeloid-derived suppressor cells. Cancer Lett. 431, 54-63.   DOI
136 Liu, Q., Zhang, M., Jiang, X., Zhang, Z., Dai, L., Min, S., Wu, X., He, Q., Liu, J., Zhang, Y., Zhang, Z. and Yang, R. (2011) miR-223 suppresses differentiation of tumor-induced CD11b(+) Gr1(+) myeloidderived suppressor cells from bone marrow cells. Int. J. Cancer 129, 2662-2673.   DOI
137 Li, L., Wang, L., Li, J., Fan, Z., Yang, L., Zhang, Z., Zhang, C., Yue, D., Qin, G., Zhang, T., Li, F., Chen, X., Ping, Y., Wang, D., Gao, Q., He, Q., Huang, L., Li, H., Huang, J., Zhao, X., Xue, W., Sun, Z., Lu, J., Yu, J. J., Zhao, J., Zhang, B. and Zhang, Y. (2018b) Metformininduced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. Cancer Res. 78, 1779-1791.   DOI
138 Li, L., Zhang, J., Diao, W., Wang, D., Wei, Y., Zhang, C. Y. and Zen, K. (2014) MicroRNA-155 and microRNA-21 promote the expansion of functional myeloid-derived suppressor cells. J. Immunol. 192, 1034-1043.   DOI
139 Lin, Y., Wang, B. S., Shan, W., Tan, Y. M., Feng, J. J., Xu, L., Wang, L. M. M., Han, B. Q., Zhang, M. M., Yu, J., Yu, X. H. and Huang, H. (2018) mTOR inhibitor rapamycin induce polymorphonuclear myeloid-derived suppressor cells mobilization and function in protecting against acute graft-versus-host disease after bone marrow transplantation. Clin. Immunol. 187, 122-131.   DOI
140 Liu, L., Ye, T. H., Han, Y. P., Song, H., Zhang, Y. K., Xia, Y., Wang, N. Y., Xiong, Y., Song, X. J., Zhu, Y. X., Li, D. L., Zeng, J., Ran, K., Peng, C. T., Wei, Y. Q. and Yu, L. T. (2014) Reductions in myeloid-derived suppressor cells and lung metastases using AZD4547 treatment of a metastatic murine breast tumor model. Cell. Phys. Biochem. 33, 633-645.   DOI
141 Liu, Y., Lai, L., Chen, Q., Song, Y., Xu, S., Ma, F., Wang, X., Wang, J., Yu, H., Cao, X. and Wang, Q. (2012) MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloidderived suppressor cells via targeting of PTEN. J. Immunol. 188, 5500-5510.   DOI
142 Liu, Y. F., Wei, J. Y., Shi, M. H., Jiang, H. and Zhou, J. (2016) Glucocorticoid induces hepatic steatosis by inhibiting activating transcription factor 3 (ATF3)/S100A9 protein signaling in granulocytic myeloidderived suppressor cells. J. Biol. Chem. 291, 21771-21785.   DOI
143 Liu, Y. F., Zhuang, K. H., Chen, B., Li, P. W., Zhou, X., Jiang, H., Zhong, L. M. and Liu, F. B. (2018) Expansion and activation of monocyticmyeloid-derived suppressor cell via STAT3/arginase-I signaling in patients with ankylosing spondylitis. Arthritis Res. Ther. 20, 168.   DOI
144 Mao, L., Zhao, Z. L., Yu, G. T., Wu, L., Deng, W. W., Li, Y. C., Liu, J. F., Bu, L. L., Liu, B., Kulkarni, A. B., Zhang, W. F., Zhang, L. and Sun, Z. J. (2018) ${\gamma}$-Secretase inhibitor reduces immunosuppressive cells and enhances tumour immunity in head and neck squamous cell carcinoma. Int. J. Cancer 142, 999-1009.   DOI
145 Long, A. H., Highfill, S. L., Cui, Y., Smith, J. P., Walker, A. J., Ramakrishna, S., El-Etriby, R., Galli, S., Tsokos, M. G., Orentas, R. J. and Mackall, C. L. (2016) Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol. Res. 4, 869-880.   DOI
146 Maenhout, S. K., Du Four, S., Corthals, J., Neyns, B., Thielemans, K. and Aerts, J. L. (2014) AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloidderived suppressor cells. Oncotarget 5, 6801-6815.   DOI
147 Mandelker, D., Gabelli, S. B., Schmidt-Kittler, O., Zhu, J., Cheong, I., Huang, C. H., Kinzler, K. W., Vogelstein, B. and Amzel, L. M. (2009) A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Proc. Natl. Acad. Sci. U.S.A. 106, 16996-17001.   DOI
148 Marigo, I., Bosio, E., Solito, S., Mesa, C., Fernandez, A., Dolcetti, L., Ugel, S., Sonda, N., Bicciato, S., Falisi, E., Calabrese, F., Basso, G., Zanovello, P., Cozzi, E., Mandruzzato, S. and Bronte, V. (2010) Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32, 790-802.   DOI
149 Martin, R. K., Saleem, S. J., Folgosa, L., Zellner, H. B., Damle, S. R., Nguyen, G. K., Ryan, J. J., Bear, H. D., Irani, A. M. and Conrad, D. H. (2014) Mast cell histamine promotes the immunoregulatory activity of myeloid-derived suppressor cells. J. Leukoc. Biol. 96, 151-159.   DOI