Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine. 2014;9:4357-73.
- Rajendran L, Knolker HJ, Simons K. Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov. 2010;9:29-42. https://doi.org/10.1038/nrd2897
- Mossalam M, Dixon AS, Lim CS. Controlling subcellular delivery to optimize therapeutic effect. Ther Deliv. 2010;1:169-93. https://doi.org/10.4155/tde.10.8
- Smith RA, et al. Mitochondrial pharmacology. Trends Pharmacol Sci. 2012;33:341-52. https://doi.org/10.1016/j.tips.2012.03.010
- Szewczyk A, Wojtczak L. Mitochondria as a pharmacological target. Pharmacol Rev. 2002;54:101-27. https://doi.org/10.1124/pr.54.1.101
- Yamada Y, Harashima H. Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases. Adv Drug Deliv Rev. 2008;60:1439-62. https://doi.org/10.1016/j.addr.2008.04.016
- Battogtokh G, et al. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharmaceutica Sinica B. 2018. https://doi.org/10.1016/j.apsb.2018.05.006.
- Michaelis L. Die vitale Farbung, eine Darstellungsmethode der Zellgranula. Arch Mikrosk Anat. 1899;55:558-75. https://doi.org/10.1007/BF02977747
- Liberman EA, et al. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature. 1969;222:1076. https://doi.org/10.1038/2221076a0
- Weiss MJ, et al. Dequalinium, a topical antimicrobial agent, displays anticarcinoma activity based on selective mitochondrial accumulation. Proc Natl Acad Sci. 1987;84:5444-8. https://doi.org/10.1073/pnas.84.15.5444
- Burns RJ, Smith RAJ, Murphy MP. Synthesis and characterization of Thiobutyltriphenylphosphonium bromide, a novel thiol reagent targeted to the mitochondrial matrix. Arch Biochem Biophys. 1995;322:60-8. https://doi.org/10.1006/abbi.1995.1436
-
Weissig V, et al. DQAsomes: a novel potential drug and gene delivery system made from
$Dequalinium^{TM}$ . Pharm Res. 1998;15:334-7. https://doi.org/10.1023/A:1011991307631 - Wu S, et al. Design, synthesis and biological evaluation of mitochondria targeting theranostic agents. Chem Commun (Camb). 2014;50:8919-22. https://doi.org/10.1039/C4CC03296A
- Guo D, et al. Cell-permeable iminocoumarine-based fluorescent dyes for mitochondria. Org Lett. 2011;13:2884-7. https://doi.org/10.1021/ol200908r
- Xu S, et al. Probing the anticancer action of Oridonin with fluorescent analogues: visualizing subcellular localization to mitochondria. J Med Chem. 2016;59:5022-34. https://doi.org/10.1021/acs.jmedchem.6b00408
- Fantin VR, et al. A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell. 2002;2:29-42. https://doi.org/10.1016/S1535-6108(02)00082-X
- Wang J, et al. Conjugated 5-fluorouracil with mitochondria-targeting lipophilic cation: design, synthesis and biological evaluation. MedChemComm. 2016;7:2016-9. https://doi.org/10.1039/C6MD00268D
- He H, et al. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells. Sci Rep. 2015;5:13543. https://doi.org/10.1038/srep13543
- MacDonald IJ, et al. Subcellular localization patterns and their relationship to photodynamic activity of pyropheophorbide-a derivatives. Photochem Photobiol. 1999;70:789-97. https://doi.org/10.1111/j.1751-1097.1999.tb08284.x
- Liu L, Zhang Z, Xing D. Cell death via mitochondrial apoptotic pathway due to activation of Bax by lysosomal photodamage. Free Radic Biol Med. 2011;51:53-68. https://doi.org/10.1016/j.freeradbiomed.2011.03.042
- Teiten MH, et al. Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan localisation in cultured tumour cells. Br J Cancer. 2003;88:146-52. https://doi.org/10.1038/sj.bjc.6600664
- Tang PM, et al. Pheophorbide a, an active compound isolated from Scutellaria barbata, possesses photodynamic activities by inducing apoptosis in human hepatocellular carcinoma. Cancer Biol Ther. 2006;5:1111-6. https://doi.org/10.4161/cbt.5.9.2950
- Choi BH, et al. The sensitivity of cancer cells to pheophorbide a-based photodynamic therapy is enhanced by Nrf2 silencing. PLoS One. 2014;9:e107158. https://doi.org/10.1371/journal.pone.0107158
- Cho H, et al. Bioreducible branched polyethyleneimine derivatives physically loaded with hydrophobic pheophorbide a: preparation, characterization, and light-induced cytotoxicity. Macromol Biosci. 2014;14:1483-94. https://doi.org/10.1002/mabi.201400145
- Kim WL, et al. Biarmed poly(ethylene glycol)-(pheophorbide a)2 conjugate as a bioactivatable delivery carrier for photodynamic therapy. Biomacromolecules. 2014;15:2224-34. https://doi.org/10.1021/bm5003619
- Kim CS, et al. Inactivation of mitochondrial electron transport by photosensitization of a pheophorbide a derivative. Mol Cells. 2004;17:347-52.
- Rapozzi V, et al. Conjugated PDT drug: photosensitizing activity and tissue distribution of PEGylated pheophorbide a. Cancer Biol Ther. 2010;10:471-82. https://doi.org/10.4161/cbt.10.5.12536
- Kwon S, et al. Mitochondria-targeting indolizino[3,2-c]quinolines as novel class of photosensitizers for photodynamic anticancer activity. Eur J Med Chem. 2018;148:116-27. https://doi.org/10.1016/j.ejmech.2018.02.016
- Tan X, et al. Structure-guided design and synthesis of a mitochondriatargeting near-infrared fluorophore with multimodal therapeutic activities. Adv Mater. 2017;29. Article No. 1704196.
- Jiang M, et al. A simple mitochondrial targeting AIEgen for image-guided twophoton excited photodynamic therapy. J Mater Chem B. 2018;6:2557-65. https://doi.org/10.1039/C7TB02609A
- Taba F, et al. Mitochondria-targeting polyamine-Protoporphyrin conjugates for photodynamic therapy. ChemMedChem. 2018;13:15-9. https://doi.org/10.1002/cmdc.201700467
- Hammerer F, et al. Mitochondria-targeted cationic porphyrin-triphenylamine hybrids for enhanced two-photon photodynamic therapy. Bioorg Med Chem. 2018;26:107-18. https://doi.org/10.1016/j.bmc.2017.11.024
- Feng G, et al. Artemisinin and AIEgen conjugate for mitochondria-targeted and image-guided chemo- and photodynamic Cancer cell ablation. ACS Appl Mater Interfaces. 2018;10:11546-53. https://doi.org/10.1021/acsami.8b01960
- Noh I, et al. Enhanced photodynamic Cancer treatment by mitochondriatargeting and brominated near-infrared fluorophores. Advanced Science. 2018;5:1700481. https://doi.org/10.1002/advs.201700481
- Hu M, et al. A hypoxia-specific and mitochondria-targeted anticancer theranostic agent with high selectivity for cancer cells. J Mater Chem B. 2018;6:2413-6. https://doi.org/10.1039/C8TB00546J
- Lee JH, et al. Self-assembled Coumarin nanoparticle in aqueous solution as selective mitochondrial-targeting drug delivery system. ACS Appl Mater Interfaces. 2018;10:3380-91. https://doi.org/10.1021/acsami.7b17711
- Choi YS, et al. Photosensitizer-mediated mitochondria-targeting nanosized drug carriers: subcellular targeting, therapeutic, and imaging potentials. Int J Pharm. 2017;520:195-206. https://doi.org/10.1016/j.ijpharm.2017.02.013
- Wang S, et al. Dual-mode imaging guided multifunctional Theranosomes with mitochondria targeting for Photothermally controlled and enhanced photodynamic therapy in vitro and in vivo. Mol Pharm. 2018;15:3318-31. https://doi.org/10.1021/acs.molpharmaceut.8b00351
- Palao-Suay R, et al. Photothermal and photodynamic activity of polymeric nanoparticles based on alpha-tocopheryl succinate-RAFT block copolymers conjugated to IR-780. Acta Biomater. 2017;57:70-84. https://doi.org/10.1016/j.actbio.2017.05.028
- Zhang X, et al. Multimodal Upconversion Nanoplatform with a mitochondria-targeted property for improved photodynamic therapy of Cancer cells. Inorg Chem. 2016;55:3872-80. https://doi.org/10.1021/acs.inorgchem.6b00020
- Hua XW, et al. Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics. Nanoscale. 2017;9:10948-60. https://doi.org/10.1039/C7NR03658B
- Xu J, et al. Preparation of a mitochondria-targeted and NO-releasing nanoplatform and its enhanced pro-apoptotic effect on cancer cells. Small. 2014;10:3750-60. https://doi.org/10.1002/smll.201400437
- Guo R, et al. Mitochondria-targeting magnetic composite nanoparticles for enhanced phototherapy of Cancer. Small. 2016;12:4541-52. https://doi.org/10.1002/smll.201601094
- Ma Z, et al. Fe(III) -doped two-dimensional C3 N4 Nanofusiform: a new O2-evolving and mitochondria-targeting photodynamic agent for MRI and enhanced antitumor therapy. Small. 2016;12:5477-87. https://doi.org/10.1002/smll.201601681
Cited by
- Mitochondrial and Nuclear DNA Oxidative Damage in Physiological and Pathological Aging vol.39, pp.8, 2018, https://doi.org/10.1089/dna.2019.5347
- Mitochondria-Targeted Self-Assembly of Peptide-Based Nanomaterials vol.9, pp.None, 2018, https://doi.org/10.3389/fbioe.2021.782234
- Mitochondria targeted fluorogenic theranostic agents for cancer therapy vol.452, pp.None, 2022, https://doi.org/10.1016/j.ccr.2021.214283