Browse > Article
http://dx.doi.org/10.5483/BMBRep.2017.50.3.222

Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting  

Eun, Kiyoung (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Ham, Seok Won (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Kim, Hyunggee (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Publication Information
BMB Reports / v.50, no.3, 2017 , pp. 117-125 More about this Journal
Abstract
Most of the cancers are still incurable human diseases. According to recent findings, especially targeting cancer stem cells (CSCs) is the most promising therapeutic strategy. CSCs take charge of a cancer hierarchy, harboring stem cell-like properties involving self-renewal and aberrant differentiation potential. Most of all, the presence of CSCs is closely associated with tumorigenesis and therapeutic resistance. Despite the numerous efforts to target CSCs, current anti-cancer therapies are still impeded by CSC-derived cancer malignancies; increased metastases, tumor recurrence, and even acquired resistance against the anti-CSC therapies developed in experimental models. One of the most forceful underlying reasons is a "cancer heterogeneity" due to "CSC plasticity". A comprehensive understanding of CSC-derived heterogeneity will provide novel insights into the establishment of efficient targeting strategies to eliminate CSCs. Here, we introduce findings on mechanisms of CSC reprogramming and CSC plasticity, which give rise to phenotypically varied CSCs. Also, we suggest concepts to improve CSC-targeted therapy in order to overcome therapeutic resistance caused by CSC plasticity and heterogeneity.
Keywords
Cancer; Cancer stem cell; Cancer therapy; Plasticity; Reprogramming;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Crea F, Hurt EM, Mathews LA et al (2011) Pharmacologic disruption of Polycomb Repressive Complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Mol Cancer 10, 40   DOI
2 Benoit YD, Witherspoon MS, Laursen KB et al (2013) Pharmacological inhibition of polycomb repressive complex-2 activity induces apoptosis in human colon cancer stem cells. Exp Cell Res 319, 1463-1470   DOI
3 Yang J, Chai L, Liu F et al (2007) Bmi-1 is a target gene for SALL4 in hematopoietic and leukemic cells. Proc Nat Acad Sci U S A 104, 10494-10499   DOI
4 Abdouh M, Facchino S, Chatoo W, Balasingam V, Ferreira J and Bernier G (2009) BMI1 sustains human glioblastoma multiforme stem cell renewal. J Neurosci 29, 8884-8896   DOI
5 Pathania R, Ramachandran S, Elangovan S et al (2015) DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat Commun 6, 6910   DOI
6 Yang L, Rau R and Goodell MA (2015) DNMT3A in haematological malignancies. Nat Rev Cancer 15, 152-165   DOI
7 Heddleston JM, Wu Q, Rivera M et al (2012) Hypoxiainduced mixed-lineage leukemia 1 regulates glioma stem cell tumorigenic potential. Cell Death Differ 19, 428-439   DOI
8 Bonnet D and Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3, 730-737   DOI
9 Chaffer CL, Marjanovic ND, Lee T et al (2013) Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154, 61-74   DOI
10 Roesch A, Fukunaga-Kalabis M, Schmidt EC et al (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141, 583-594   DOI
11 Frank NY, Schatton T and Frank MH (2010) The therapeutic promise of the cancer stem cell concept. J Clin Invest 120, 41-50   DOI
12 Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756-760   DOI
13 Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645-648   DOI
14 Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100, 3983-3988   DOI
15 Medema JP (2013) Cancer stem cells: The challenges ahead. Nat Cell Biol 15, 338-344   DOI
16 Jeon HM, Sohn YW, Oh SY et al (2011) ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res 71, 3410-3421   DOI
17 Brooks MD, Burness ML and Wicha MS (2015) Therapeutic Implications of Cellular Heterogeneity and Plasticity in Breast Cancer. Cell Stem Cell 17, 260-271   DOI
18 Sun Y, Campisi J, Higano C et al (2012) Treatmentinduced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 18, 1359-1368   DOI
19 Plaks V, Kong N and Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16, 225-238   DOI
20 Ricci-Vitiani L, Pallini R, Biffoni M et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468, 824-828   DOI
21 Cheng L, Huang Z, Zhou W et al (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153, 139-152   DOI
22 Justilien V and Fields AP (2015) Molecular pathways: novel approaches for improved therapeutic targeting of Hedgehog signaling in cancer stem cells. Clin Cancer Res 21, 505-513   DOI
23 Schmohl JU and Vallera DA (2016) CD133, Selectively Targeting the Root of Cancer. Toxins (Basel) 8, 165   DOI
24 Gurney A, Axelrod F, Bond CJ et al (2012) Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci U S A 109, 11717-11722   DOI
25 Gavai AV, Quesnelle C, Norris D et al (2015) Discovery of Clinical Candidate BMS-906024: A Potent Pan-Notch Inhibitor for the Treatment of Leukemia and Solid Tumors. ACS Med Chem Lett 6, 523-527   DOI
26 Huang SD, Yuan Y, Tang H et al (2013) Tumor cells positive and negative for the common cancer stem cell markers are capable of initiating tumor growth and generating both progenies. PLoS One 8, e54579   DOI
27 Kim J, Villadsen R, Sorlie T et al (2012) Tumor initiating but differentiated luminal-like breast cancer cells are highly invasive in the absence of basal-like activity. Proc Natl Acad Sci U S A 109, 6124-6129   DOI
28 Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396-1401   DOI
29 Liu S, Cong Y, Wang D et al (2014) Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports 2, 78-91   DOI
30 Meyer M, Reimand J, Lan X et al (2015) Single cellderived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci U S A 112, 851-856   DOI
31 Brennan CW, Verhaak RG, McKenna A et al (2013) The somatic genomic landscape of glioblastoma. Cell 155, 462-477   DOI
32 Mao P, Joshi K, Li J et al (2013) Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci U S A 110, 8644-8649   DOI
33 Bhat KP, Balasubramaniyan V, Vaillant B et al (2013) Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell 24, 331-346   DOI
34 Das R, Gregory PA, Hollier BG, Tilley WD and Selth LA (2014) Epithelial plasticity in prostate cancer: principles and clinical perspectives. Trends Mol Med 20, 643-651   DOI
35 Banyard J, Chung I, Wilson AM et al (2013) Regulation of epithelial plasticity by miR-424 and miR-200 in a new prostate cancer metastasis model. Sci Rep 3, 3151   DOI
36 Ruscetti M, Dadashian EL, Guo W et al (2016) HDAC inhibition impedes epithelial-mesenchymal plasticity and suppresses metastatic, castration-resistant prostate cancer. Oncogene 35, 3781-3795   DOI
37 Ebrahimi B (2015) Reprogramming barriers and enhancers: strategies to enhance the efficiency and kinetics of induced pluripotency. Cell Regen (Lond) 4, 10
38 Charafe-Jauffret E, Ginestier C, Iovino F et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69, 1302-1313   DOI
39 Petersen OW, Nielsen HL, Gudjonsson T et al (2003) Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am J Pathol 162, 391-402   DOI
40 Hanahan D and Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674   DOI
41 Jiao X, Katiyar S, Willmarth NE et al (2010) c-Jun induces mammary epithelial cellular invasion and breast cancer stem cell expansion. J Biol Chem 285, 8218-8226   DOI
42 Xin YH, Bian BS, Yang XJ et al (2013) POU5F1 enhances the invasiveness of cancer stem-like cells in lung adenocarcinoma by upregulation of MMP-2 expression. PLoS One 8, e83373   DOI
43 Chen L, Fan J, Chen H et al (2014) The IL-8/CXCR1 axis is associated with cancer stem cell-like properties and correlates with clinical prognosis in human pancreatic cancer cases. Sci Rep 4, 5911
44 Friedl P and Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147, 992-1009   DOI
45 Eppert K, Takenaka K, Lechman ER et al (2011) Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17, 1086-1093   DOI
46 Piccirillo SG, Colman S, Potter NE et al (2015) Genetic and functional diversity of propagating cells in glioblastoma. Stem Cell Reports 4, 7-15   DOI
47 Meacham CE and Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501, 328-337   DOI
48 Yan G-N, Yang L, Lv Y-F et al (2014) Endothelial cells promote stem-like phenotype of glioma cells through activating the Hedgehog pathway. J Pathol 234, 11-22   DOI
49 Chen K, Huang Y-h and Chen J-l (2013) Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 34, 732-740   DOI
50 Sirko S, Behrendt G, Johansson PA et al (2013) Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog. Cell Stem Cell 12, 426-439   DOI
51 Hay ED (1995) An overview of epithelial-mesenchymal transformation. Acta Anat (Basel) 154, 8-20   DOI
52 Mani SA, Guo W, Liao MJ et al (2008) The epithelialmesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715   DOI
53 Ouyang G, Wang Z, Fang X, Liu J and Yang CJ (2010) Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cell Mol Life Sci 67, 2605-2618   DOI
54 Karin M and Greten FR (2005) NF-kappa B: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5, 749-759   DOI
55 Li CW, Xia W, Huo L et al (2012) Epithelial-mesenchymal transition induced by TNF-alpha requires NF-kappaB-mediated transcriptional upregulation of Twist1. Cancer Res 72, 1290-1300   DOI
56 Li Y, Li A, Glas M et al (2011) c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Natl Acad Sci U S A 108, 9951-9956   DOI
57 Jeter CR, Liu B, Liu X et al (2011) NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene 30, 3833-3845   DOI
58 Takahashi K and Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676   DOI
59 Suva ML, Rheinbay E, Gillespie SM et al (2014) Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157, 580-594   DOI
60 Lee TK, Castilho A, Cheung VC, Tang KH, Ma S and Ng IO (2011) CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell 9, 50-63   DOI
61 Rudin CM, Durinck S, Stawiski EW et al (2012) Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 44, 1111-1116   DOI
62 Suva ML, Rheinbay E, Gillespie SM et al (2014) Reconstructing and reprogramming the tumor propagating potential of glioblastoma stem-like cells. Cell 157, 580-594   DOI
63 Li L and Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21, 605-631   DOI
64 Plaks V, Kong N and Werb Z (2015) The Cancer Stem Cell Niche: How Essential is the Niche in Regulating Stemness of Tumor Cells? Cell stem cell 16, 225-238   DOI
65 Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C and Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109-1121   DOI
66 Oh M and Nor JE (2015) The Perivascular Niche and Self-Renewal of Stem Cells. Front Physiol 6, 367
67 Yan GN, Yang L, Lv YF et al (2014) Endothelial cells promote stem-like phenotype of glioma cells through activating the Hedgehog pathway. J Pathol 234, 11-22   DOI
68 Calabrese C, Poppleton H, Kocak M et al (2007) A Perivascular Niche for Brain Tumor Stem Cells. Cancer Cell 11, 69-82   DOI
69 Charles N, Ozawa T, Squatrito M et al (2010) Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6, 141-152   DOI
70 Jeon HM, Kim SH, Jin X et al (2014) Crosstalk between glioma-initiating cells and endothelial cells drives tumor progression. Cancer Res 74, 4482-4492   DOI
71 Jogi A, Ora I, Nilsson H et al (2002) Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc Natl Acad Sci U S A 99, 7021-7026   DOI
72 Beck B, Driessens G, Goossens S et al (2011) A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478, 399-403   DOI
73 Zhang Z, Dong Z, Lauxen IS, Filho MS and Nor JE (2014) Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype. Cancer Res 74, 2869-2881   DOI
74 Simon MC and Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9, 285-296   DOI
75 Lofstedt T, Jogi A, Sigvardsson M et al (2004) Induction of ID2 expression by hypoxia-inducible factor-1: a role in dedifferentiation of hypoxic neuroblastoma cells. J Biol Chem 279, 39223-39231   DOI
76 Bao B, Azmi AS, Ali S et al (2012) The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochimica et biophysica acta 1826, 272-296
77 Zhang C, Samanta D, Lu H et al (2016) Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Nat Acad Sci U S A 113, E2047-E2056   DOI
78 Yang MH, Wu MZ, Chiou SH et al (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10, 295-305   DOI
79 Joseph JV, Conroy S, Pavlov K et al (2015) Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1alpha-ZEB1 axis. Cancer Lett 359, 107-116   DOI
80 Xing F, Okuda H, Watabe M et al (2011) Hypoxiainduced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells. Oncogene 30, 4075-4086   DOI
81 Yu Y, Xiao CH, Tan LD, Wang QS, Li XQ and Feng YM (2014) Cancer-associated fibroblasts induce epithelialmesenchymal transition of breast cancer cells through paracrine TGF-beta signalling. Br J Cancer 110, 724-732   DOI
82 Condeelis J and Pollard JW (2006) Macrophages: Obligate Partners for Tumor Cell Migration, Invasion, and Metastasis. Cell 124, 263-266   DOI
83 Sullivan NJ, Sasser AK, Axel AE et al (2009) Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 28, 2940-2947   DOI
84 Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM and Zhou BP (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15, 416-428   DOI
85 Orkin SH and Hochedlinger K (2011) Chromatin connections to pluripotency and cellular reprogramming. Cell 145, 835-850   DOI
86 Vermeulen L, De Sousa E Melo F, van der Heijden M et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12, 468-476   DOI
87 Hamada S, Masamune A, Takikawa T et al (2012) Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells. Biochem Biophys Res Commun 421, 349-354   DOI
88 Lotti F, Jarrar AM, Pai RK et al (2013) Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med 210, 2851-2872   DOI
89 Liang G and Zhang Y (2013) Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res 23, 49-69   DOI
90 Widschwendter M, Fiegl H, Egle D et al (2007) Epigenetic stem cell signature in cancer. Nat Genet 39, 157-158   DOI
91 Ohm JE, McGarvey KM, Yu X et al (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39, 237-242   DOI
92 Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN and Struhl K (2010) Loss of miR-200 inhibition of Suz12 leads to Polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 39, 761-772   DOI
93 Kreso A and Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14, 275-291   DOI
94 Easwaran H, Johnstone SE, Van Neste L et al (2012) A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res 22, 837-849   DOI
95 Rizzo S, Hersey JM, Mellor P et al (2011) Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2. Mol Cancer Ther 10, 325-335   DOI