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Most of the cancers are still incurable human diseases. 
According to recent findings, especially targeting cancer stem 
cells (CSCs) is the most promising therapeutic strategy. CSCs 
take charge of a cancer hierarchy, harboring stem cell-like 
properties involving self-renewal and aberrant differentiation 
potential. Most of all, the presence of CSCs is closely associated 
with tumorigenesis and therapeutic resistance. Despite the 
numerous efforts to target CSCs, current anti-cancer therapies 
are still impeded by CSC-derived cancer malignancies; 
increased metastases, tumor recurrence, and even acquired 
resistance against the anti-CSC therapies developed in 
experimental models. One of the most forceful 
underlying reasons is a “cancer heterogeneity” due to “CSC 
plasticity”. A comprehensive understanding of CSC-derived 
heterogeneity will provide novel insights into the 
establishment of efficient targeting strategies to eliminate 
CSCs. Here, we introduce findings on mechanisms of 
CSC reprogramming and CSC plasticity, which give rise to 
phenotypically varied CSCs. Also, we suggest concepts to 
improve CSC-targeted therapy in order to overcome 
therapeutic resistance caused by CSC plasticity and 
heterogeneity. [BMB Reports 2017; 50(3): 117-125]

INTRODUCTION

Revealing the origin of cancer has been a topic of much 
interest in that it might shed light on a complete treatment of 
cancer. For the past 20 years, plenty of studies have suggested 
that only a small subpopulation of the cancer cells with 
tumor-initiating capability is the core origin of the tumori-
genesis and the subset of cancer cells was named cancer stem 
cells (CSCs). As it can be inferred from its nomenclature, CSCs 
share several features of normal stem cells. They can 

self-renew to form identical daughter cells by cell division and 
differentiate into various types of progenies (1).

Early researches on CSCs have been focused on verifying the 
existence of CSCs in certain types of cancer and finding 
molecular markers for isolation of CSCs. Several years after the 
conceptual suggestion of the existence of stem-like cancer 
cells, experimental evidence was first provided in a leukemia
model, confirming that CD34＋CD38− leukemic cells show
bone marrow hematopoietic stem cell characteristics (2, 3). 
Solid tumor CSCs were first identified in breast cancer
(CD44＋CD24−/lowLin−), followed by their establishment in
other common cancer types, including brain, ovary, prostate, 
colon, pancreas, liver, skin, and lung cancers, and common or 
unique CSC markers have been suggested for the tumors (4, 5).

Currently, it is widely accepted that CSCs are closely related 
to pathological features which result in worse clinical 
prognosis. Resistance to the conventional anti-cancer therapies 
is a characteristic of CSCs which is most important from a 
clinical point of view. CSCs harbor endogenous resistance 
mechanisms against radiation and chemotherapy which gives 
CSCs a survival advantage over differentiated counterparts (6, 
7). Also, CSCs can lead to the diverse composition of cells in a 
tumor tissue which results in the generation of phenotypically 
varied subclones, thereby increasing the chances of leaving a 
resistant fraction after anti-cancer therapy (8).

The surrounding microenvironment critically affects cancers 
by regulating CSC physiologies. The tumor microenvironment 
not only supplies growth-promoting signals, but it also takes 
part in therapeutic resistance by protecting tumor cells from 
the therapy-induced damages (9). Earlier studies have demon-
strated the role of microenvironments such as perivascular, 
hypoxic and invasive niches, in the generation and maintenance 
of CSCs (10). However, subsequent studies have shown 
evidence that CSCs also contribute to the reconstitution of the 
microenvironment through transdifferentiation into lineages 
which resemble normal stroma such as blood vessel 
endothelial cells, pericytes or fibroblasts (11-13).

Increased infiltration to the surrounding area and metastasis 
to the secondary organs are the most remarkable features of 
malignant tumors (14). The presence of CSCs within a tumor is 
often connected to the enhanced invasiveness and metastatic 
capability. Many studies have demonstrated the promotive 
roles of CSCs in tumor invasiveness and metastasis through in 
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Fig. 1. Core signaling pathways and epigenetic modifications regulating CSC reprogramming and differentiation.

vitro and in vivo gain-or-loss-of-function approaches (15-18). 
Besides, recent studies are focusing on the plasticity of CSCs; a 
dynamic transition of the cellular phenotype between epithelial- 
like and mesenchymal-like depending on the stages of invasion 
or metastasis (19). Corresponding to the characteristics of CSCs 
mentioned above, bioinformatics-based studies have shown 
that a worse prognosis of the patient correlates with higher 
expression of the molecular signatures related to CSCs (20).

Two representative concepts about the origin of the CSC 
were suggested; one postulating transformed adult stem cell as 
a CSC source and the other demonstrating that differentiated 
cancer cells can be reprogrammed to become CSC (10). 
Recent findings reported that reprogramming occurs in the 
variety of the tumors and it affects CSC heterogeneity by two 
ways; reprogramming of genetically diverse non-CSCs and 
dynamic state-switching of CSCs (1, 21, 22). Thus, this review 
article focuses on the CSC reprogramming, giving explanations 
on the molecular mechanism of reprogramming discovered 
through varying previous studies. Also, this review demon-
strates the limitations of current strategies targeting CSCs and 
the proposed remedies to overcome those limits.

REPROGRAMMING MECHANISMS

Core stemness signals and transcription factors (TFs) for 
reprogramming
It is known that normal stem cells and CSCs share core 

stemness signaling such as Notch, Hedgehog, WNT/-Catenin, 
JAK/STAT, and NFB (23). They have vital roles in maintaining 
stem cell properties or regulating their differentiation during 
numerous developmental processes and tumor progression. 
Recently, some papers suggested that an activation of these 
signals functions in regulating stem cell plasticity in both 
normal and cancer tissues. In the normal cerebral cortex, glial 
cell types like astrocytes give rise to reactive astrocytes, which 
have multipotencies like neural stem cells in vivo and in vitro 
via Sonic Hedgehog (SHH) signaling induction after invasive 
injury, and re-differentiate into neurons (24). It implies that 
certain types of differentiated cells act as tissue progenitors via 
dedifferentiation to repair tissue injuries. Similarly, SHH 
secreted by endothelial cells promotes CSC-like properties of 
glioma cells (25). Therefore, exposure to appropriate stemness 
signals can induce dedifferentiation mechanisms in normal 
tissues, and cancer uses them to build a cellular hierarchy. 

Recent studies have identified that the most representative 
reprogramming process in physiological conditions is a 
transformation of the epithelial cell into mesenchymal type, 
namely epithelial-to-mesenchymal transition (EMT). Because 
mesenchymal type cells facilitate to migrate through the 
extracellular matrix (ECM), it is critically important to embryo-
genesis and further developmental process (26). Importantly, 
this phenomenon appears in both normal and cancer cells. 
Both mammary epithelial cells and mammary carcinomas 
underwent EMT, acquiring many stem cell phenotypes (27). 
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Moreover, mechanisms of EMT and CSCs share many identical 
TFs, such as Twist, ZEB1/2, and HIFs, and signaling pathways 
of TGF-, WNT/-Catenin, Notch, and Hedgehog (28). During 
recent two decades, growing number of studies have shown 
that the importance of NFB-mediated inflammatory signal has 
been issued in CSC biology, especially in MET (29). For 
example, breast cancer induces EMT program by NFB-Twist 
axis activated by TNF stimulation (30). 

Although CSCs activate such core stemness signaling 
pathways, the most important point is that final alteration of 
gene expression pattern is directly controlled by TFs. For 
examples, HGF-cMET-mediated reprogramming network 
requires the function of Nanog, which is one of the embryonic 
TFs (31). Likewise, many studies have explained links between 
CSC reprogramming mehanisms and the major stem cell TF 
networks. Its importance has been suggested in induced 
pluripotent stem cells (iPSCs) generation from somatic cells by 
ectopic expression of 4 TFs, OCT3/4, SOX2, KLF4, and cMYC 
(32). They regulate various genes required for pluripotency. 
Activation of iPSC reprogramming factors has identified in 
many types of cancers including glioblastoma and carcinomas 
of breast, liver, prostate, and lung, especially in CSCs (33-36). 
More specifically, in brain tumors, core neurodevelopmental 
TFs containing POU3F2, SOX2, SALL2, and OLIG2 play 
crucial roles in stem-like glioma cells and their ectopic 
expression induces stem cell properties (37), indicating that it 
is necessary to understand the functions of TFs related to tissue 
stem/progenitors. Moreover, many studies dealing with such 
stemness-associated TFs have demonstrated their roles in the 
acquisition of CSC properties by their gain-of-function 
experiments. So, to target CSCs, it is necessary to understand 
comprehensively about extracellular reprogramming signal 
inducers like ligands, their downstream signal cascades, and 
finally corresponding TFs in CSCs (Fig. 1). Hereafter, we 
introduce in-depth several mechanisms which account for 
cancer cell reprogramming into CSC.

Microenvironmental factors 
Although genetic mutations are closely associated with cancer, 
the plasticity of cancer is more affected by their microenviron-
ment rather than mutation during the reprogramming process. 
For normal tissue homeostasis, stem cells are regulated by 
various signaling derived from specialized microenvironments, 
called stem cell niches (38). Similarly, numerous studies have 
suggested CSCs require their CSC niches to maintain stem cell 
properties. These niches consist of endothelial cells, immune 
cells, fibroblasts, ECM, and their secreted factors like growth 
factors or cytokines (39). The most studied niches are 
perivascular and hypoxic niches, but other microenvironments 
composed of various stromal cells have been identified (39). 
Interestingly, recent studies have suggested that CSC niches or 
individual microenvironments are important to not only CSC 
maintenance but reprogramming into CSCs. 
Perivascular niche: The best-studied niche is a perivascular 

niche, meaning microenvironments around blood vessels. 
Along with numerous studies, Kiel et al. firstly concluded 
hematopoietic stem cells resided in the perivascular region in 
spleen and bone marrow and defined it as a stem cell niche 
(40). Likewise, this niche is crucial for maintenance of CSC 
populations in cancer tissue by direct cell-cell interactions or 
secreted soluble factors (41). Glioma is the best known human 
cancer about the perivascular niche for CSCs. In 2007, it was 
firstly suggested vascular microenvironments help maintenance 
of self-renewing CSC pool in brain tumor (42). Recently, 
endothelial cells are known to enhance stemness properties of 
CSCs in glioma by Notch signal activation and the nitric oxide 
(NO)-signaling pathway (43). Similarly, the increase in 
inhibitor of differentiation 4 (ID4) by platelet-derived growth 
factor (PDGF)-driven NO signaling promotes Jagged1-Notch 
activity, resulting in self-renewal properties and tumorigenesis 
of glioblastoma (44). SHH-positive endothelial cells increase 
various stemness factors like SOX2, OLIG2, and BMI1 in 
glioma cells, generating CD133＋ CSC-like glioma cell (45). 

Besides brain tumors, reprogramming mechanisms of other 
types of cancer in the vascular niche have also been identified. 
Vascular endothelial growth factor (VEGF) in the niche 
promotes cancer stemness properties in skin squamous cell 
carcinoma (46). In head and neck squamous cell carcinoma, 
epidermal growth factor (EGF) secreted from endothelial cells 
induces EMT of cancer cells and leads them to acquire stem 
cell characteristics (47). 
Hypoxia: Since oxygen is an essential factor for cellular 
metabolism and various physiologies, the body consistently 
requires this gas. Importantly, as it accepts a final electron in 
oxidative phosphorylation, physiological condition of low 
oxygen, named hypoxia, causes harmful damages to cells. It 
has been identified that various cells have many response and 
adaptation mechanisms to hypoxia, which is mainly mediated 
by oxygen sensor protein, Hypoxia-inducible factors (HIFs). 
Hypoxia also has a beneficial effect on embryonic develop-
ment or in maintaining stem cell functions (48). Unfortunately, 
cancer utilizes these stem cell-related programs to maintain or 
generate CSCs in hypoxia. In neuroblastomas, HIF1 and 
HIF2 stabilized in hypoxia change gene expression patterns 
and induce dedifferentiation into neural crest sympathetic 
progenitor-like cells expressing Notch-1 and c-Kit (49). Similarly, 
increased ID2 by HIF1 plays a role in dedifferentiation of 
neuroblastoma cells (50). Some studies demonstrated direct 
regulation of well-known stemness TFs in hypoxia. Hypoxia 
and HIFs induce ALKBH5-mediated m6A-demethylation of 
Nanog mRNA and its stabilization in breast cancer (51). 

Since hypoxia causes a depletion of nutrients as well as 
oxygen, it is an unfavorable condition for cellular growth or 
lots of biosynthetic processes even in cancer cells. Not only an 
adaptation but an evasion from the hypoxia condition may be 
a possible way to survive. EMT is the most relevant phenomenon 
with cellular invasiveness and cancer reprogramming in 
hypoxia. HIF1 transcriptionally regulates well-known EMT- 
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related TFs such as ZEB1, and Twist (52, 53). Also, some 
studies have indicated that core stemness signaling pathways 
involving Notch, WNT/-Catenin, Hedgehog, and NFB are 
potentially associated with hypoxia and EMT (54). In breast 
cancer, Jagged2-Notch signaling induced by hypoxia stimulates 
EMT programs, causing metastasis and acquisition of stem cell 
properties (55). These results suggest that hypoxia-mediated 
EMT programs play a pivotal function in activating metastatic 
cells that have CSC properties. 
Other stromal cells: A recent trend in cancer biology is to 
identify mechanisms governing microenvironment-mediated 
tumor malignancy. There are numerous types of stromal cells 
including immune cells, mesenchymal stem cells and even 
fibroblasts in tumor tissues, promoting CSC plasticity. A tumor 
modulates immune cells, in particular, by secretion of various 
cytokines to make help tumor progression rather than attack 
them. It is suggestive that inflammatory-associated factors may 
activate reprogramming network leading to the generation of 
CSCs. Recruited monocytes and macrophages into tumor 
tissue induce invasion and metastasis and create immuno-
suppressive environment via secretion of TGF-, known as a 
potent stimulator of EMT (56). Activated NFB and STAT3 
signaling pathways via inflammatory cytokines like IL-6 and 
TNF also induce EMT (57, 58). These immune-associated 
microenvironments are inevitably occurred in tumor tissues 
and participate in cancer plasticity regardless intended or 
unintended.

Fibroblasts in tumor tissue called cancer-associated fibroblasts 
(CAFs) promote tumor progression, and some studies 
demonstrated their role in dedifferentiation. CAF promotes 
malignancy of breast cancer through EMT induced by TGF- 
secretion (59). Myofibroblast-secreted factor including HGF 
enhances WNT signal activity and stemness properties of 
LGR5-positive colorectal CSCs (60). A stellate cell which is 
myofibroblast-like cell in pancreas promotes CSC phenotype 
via Nodal/Activin (61). 

These reports have shown varying cytokines or growth 
factors from various stromal cells activate stem cell properties 
of cancer cells and induce metastasis. Importantly, because 
most of the cytokine-mediated signaling pathways can be 
associated with inflammation responses, damages induced by 
various therapies may cause such inflammatory microenviron-
ment, rather leading cancer malignancies. One study showed 
CAF secrets IL-17A, which enhances stem cell properties of 
colorectal cancer after chemotherapy, resulting in a chemo-
resistance and a recurrence (62). 

Epigenetic alteration
Beyond these signaling cascades, a final determination of cell 
type is dependent on the epigenetic status of lineage 
determinant factors. During iPSCs generation, iPSC TFs consist 
of embryonic stem cell (ESC) chromatin network along with 
various epigenetic modulators, driving specialized epigenetic 
mechanisms which play crucial roles in resetting their 

identities during reprogramming process (63, 64). Likewise, 
such stemness TFs and epigenetic modifications are 
considered to function as critical elements for reprogramming 
cancer cells into CSCs. In fact, many recent studies have 
reported relevance of various epigenetic modifiers in cancers. 
For example, cancer cells repress differentiation-related genes 
or tumor suppressor genes through epigenetic silencing of 
Polycomb-group proteins, which function in cellular differen-
tiation and development via histone modification-driven 
transcriptional repression (65, 66). Although methylation status 
of each cancer type varies, hypermethylated gene set of a 
particular type of cancer is sharing with ESC signature (67). It 
has been identified that key factors of polycomb repressive 
complex 2 (PRC2), such as enhancer of zeste homolog 2 
(EZH2) and suppressor of zeste 12 homolog (SUZ12), were 
overexpressed in ovarian, breast, prostate, and colon cancers 
and they were crucial for maintenance of their CSC population 
(68-71). Ectopic expression of SUZ12 in differentiated breast 
cancer cell resulted in the CSC formation (69). BMI1, a key 
subunit of PCR1 complex, is upregulated by controlling 
methylation pattern on its promoter by embryonic transcrip-
tion factor SALL4 in leukemic stem cells (72). In glioblastoma, 
BMI1 and EZH2 are highly expressed in tumor-initiating 
CD133-positive cells, and their knockdown disrupts stem cell 
properties (73). Besides PRC complex subunit, numerous 
chromatin regulators have been reported in human cancer. 
DNA methyltransferases (DNMTs) containing DNMT1 essential 
for maintenance of existing methylation patterns and DNMT3 
for de novo methylations at CpG islands are also potential 
factors for CSC reprogramming. For incidence, DNMT1 and 
DNMT3A have a crucial function in regulating malignancies of 
breast CSCs and various leukemia stem cells, respectively (74, 
75). Another histone methyltransferase, mixed-lineage leukemia 
1 (MLL1), is required for hypoxia-induced self-renewal 
properties (76), whereas one of histone demethylases, JARID1B, 
is engaged in the dynamics of CSC population in melanomas 
(77). 

In conclusion, an aberrant epigenetics induce or suppress 
transcription of stemness or differentiation factors, resulting in 
an activation of various stemness signaling pathways in 
differentiated cancer cells. Furthermore, to explain variable 
cancer plasticity, chromatin status also may be closely 
associated with their surrounding microenvironments, rather 
than a one-time genetic mutation. For example, differentiated 
basal breast cancers acquire CSC characteristics by ZEB1 
increased by TGF signaling (78). Altogether, dynamics of the 
chromatin status are controlled by regular cellular programs 
which, in turn, are controlled by stimuli recognizers, signal 
mediators, and TFs under physiological conditions and with 
proper environmental factors. 
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Fig. 2. A schematic diagram showing 
CSC targeting strategies.

PERSPECTIVES ON CSC TARGET THERAPY IN THE 
PRESENT AND THE FUTURE

Current CSC targeting strategies and their limitations
As CSCs take critical roles in cancer progression and 
therapeutic resistance as the apex of cancer hierarchy, 
anti-cancer therapy targeting CSCs has been suggested to be a 
promising therapeutic modality to effectively eliminate the 
origin of cancer development and reduce the risk of recurrence 
(79). There are several studies showing CSC targeting strategies 
including targeting CSC-marker, CSC-specific cellular signaling 
pathways, and CSC microenvironment. Since several pro-
minent CSC surface markers have been discovered in various 
cancer types, researchers speculated that it would be 
promising to target those markers for the CSC-specific drug 
delivery and direct inhibition of CSC maintenance. Many 
studies tried CD133-mediated CSC targeting, for instance, drug 
conjugation to CD133 antibody, immune-mediated clearing 
with CD133-recognizing bi-specific antibodies bound to 
immune cells and nanoparticle-conjugated CD133 aptamer, 
showed modest anti-CSC effect (80). Researchers also tried to 
abrogate CSC-specific signaling nodes by chemical- or 
antibody-dependent inhibition. Recent reports demonstrated 
positive clinical and pre-clinical outcomes of CSC-specific 
signaling component inhibitors such as OMP-18R5 targeting 
WNT receptor Frizzled, BMS-906024 targeting -secretase to 
block Notch signaling, and vismodegib and BMS-833923 
which block SHH signal receptor Smoothened (81-83).

Despite the multilateral approaches, recent studies have 
pointed out the limitations of CSC targeting strategies. CSC 
marker-negative or differentiation marker-positive cancer cells 
could initiate tumor formation (84, 85). Single cell transcrip-
tome analysis revealed that the cells positive for the different 
CSC markers or the cells harboring activation of the distinct 
CSC-specific signaling nodes, could co-exist within a population 
of tumor cells, and many CSC or cancer subtype markers can 
be expressed by a cell at the same time. This demonstrates that 

CSCs are heterogeneous and that a single CSC marker does not 
properly segregate CSCs and non-CSCs (86). Also, activation of 
CSC-specific signaling pathways could be different within a 
tumor, implying that abrogation of a single pathway may not 
critically affect whole CSCs (87). It is plausible that diversity of 
CSCs may be generated by distinct stemness or reprogram-
ming signaling activations, resulting in divergent expression 
patterns or CSC markers. Therefore, development of CSC- 
specific targeting strategies using marker-dependently sorted 
CSCs and targeting of a single CSC marker or signaling node is 
not proper strategy due to CSC heterogeneity.

Necessity for comprehensive understanding of CSC 
dynamics: Diversity of phenotypes and distinct 
reprogramming process 
In the past, we commonly defined CSC as a cell at a “fixed” 
status consistently maintaining so-called “CSC phenotypes”. 
However, some evidence suggests that we should put more 
weight to the plasticity of CSCs, a dynamic conversion of 
phenotypic status by trans-differentiation and reprogramming, 
rather than if CSCs remain in the steady-state (1). In the breast 
CSC model, both ALDH＋, and CD44＋/CD24− populations 
are stem-like, but their phenotypes differ; one being more 
quiescent resembling luminal type of normal breast stem cells 
and the other being more mesenchymal-like similar to basal 
type of breast stem cells, even though those populations are 
capable of interconversion between each other (8, 88). 

Recently, several cancers are subdivided into “subtypes” by 
distinct gene expression patterns and characteristics, even 
though they were formed from identical tissues. Thus, a 
subtypical conversion of CSCs may be a potent cause of CSC 
dynamics. This phenomenon has been demonstrated in various 
cancers and showed a clear example of their plasticity. The 
phenotypic transition of the proneural type of brain CSCs into 
mesenchymal CSC type is well-characterized, and ALDH1A3 
and NFB signaling activation are identified to be key 
modulators for this transition (89-91). Another study showed 
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CSC plasticity in the prostate cancer, which is strongly related 
to metastatic capability (92). Recent findings suggested that 
poor prognostic outcome of the castration-resistant prostate 
cancer accounts for the dynamic switching of prostate CSCs 
between epithelial-like and mesenchymal-like states by 
androgen signaling, histone modification, and miRNAs which 
eventually promotes metastatic spread (92-94). A capability for 
these dynamic transitions leads CSCs to adapt to environ-
mental changes in the process of invasion and metastasis 
thereby affecting tumor progression and imparting therapeutic 
resistance. These studies have suggested that the rapid and 
repetitive reprogramming process generates a hierarchical 
organization and a mixed composition of phenotypically 
distinct subclones. Importantly, each subtype may require 
activations of distinct and specific signaling pathways, because 
they show their specific gene expression patterns. Although 
we still narrowly understand about subtypical interconversions 
of CSCs, it is likely that distinct signaling activators or specific 
microenvironmental conditions may be required for the 
transition into specific subtypes. 

Necessity for comprehensive understanding of CSC 
dynamics: Status of CSC sources
Given that CSCs could originate from differentiated non-CSCs 
by reprogramming signals, it is reasonable that these signals 
dedifferentiate non-CSCs harboring different genetic content 
giving rise to genetically heterogeneous CSCs or that they may 
not give rise to CSCs even in an existence of potent reprogram-
ming activators. During iPSC generation, reprogramming is 
affected by various factors, including epigenetic factors and 
TFs, acting as reprogramming barriers or enhancers (95). A 
previous study reported that each of the clones with different 
genetic alterations requires activation of distinct signaling 
nodes, which can promote stem cell-like properties and tumor 
propagation. This result suggests that, even though CSCs 
within a tumor may share some of CSC features, diversity in 
the genetic background would give rise to a variety of CSC 
phenotypes (21). One of the standard features of cancers is 
genomic instability, including mutations and aberrant epigene-
tics, and it is known that each of the cells consisting tumor 
bulk harbors various genetic alterations thus presenting genetic 
heterogeneity (14). Cancer cells with diverse background 
status may reach to different CSC hierarchical stages or 
become different CSC types even in identical conditions. 
Despite various mechanisms governing stemness or reprogram-
ming, it seems that they converge towards several stemness 
TFs to regulate stem cell gene signatures. For example, 
epigenetic modifiers interacting stemness TFs may function as 
crucial elements to do this, because genes being epigenetically 
tied-up status, called “heterochromatin,” should be open to 
facilitate their transcription in non-CSCs. Therefore, it is 
plausible that identifying transcription factor and epigenetic 
modifier networks involving in CSCs and reprogramming 
process should be a potential approach to developing CSC 

targeting strategy. Furthermore, development of a CSC-specific 
therapy that targets molecular mechanisms controlling CSC 
heterogeneity should be an important future goal.

CONCLUSION

As mentioned above, developing therapeutic strategies to 
target CSCs is necessary considering its impact on cancer 
progression and prognosis of patients. However, targeted 
elimination of pre-existing CSCs is not enough as plenty of 
recent findings demonstrates that the CSCs can be newly 
generated from the differentiated non-CSCs by reprogramming 
mechanism through which even CSCs with different charac-
teristics could emerge. That is, CSCs not only serve as the 
origin of tumor formation but also drive heterogeneity of cell 
composition inside the tumor and CSCs themselves as well. 
Since CSC diversity renders tumor resistant to the anti-cancer 
therapies eventually resulting in recurrence, it is necessary to 
gain new insight from a comprehensive understanding of CSC 
plasticity based on molecular genetics and biology. 

Thus, our perspectives on establishing novel CSC-targeting 
strategy suggest that we should consider the following respects 
(Fig. 2). 1) Since populations of CSCs already reside in the 
tumor, eliminating them by marker-dependent targeting or 
inhibition of CSC-specific signaling nodes should be initial and 
essential regimens as is currently accepted. 2) Also, controlling 
a variety of reprogramming mechanisms should be combined 
to prevent de novo generation of the different types of CSCs. 
Unfortunately, it is impossible to modulate all the repro-
gramming signals at the same time, 3) therefore certain 
microenvironment-specific or subtype-specific core TF-epigenetic 
modifier networks should be identified and considered as a 
potential target. Although CSCs are regulated by diverse 
signaling depending on their types, we may speculate that 
CSCs would share common transcriptional programs mediated 
by core TF-epigenetic modifier networks, as described in 
similar gene expression signature among CSCs of same subtype. 

In summary, interconnected networks consisting of various 
TFs, microenvironmental factors, and epigenetic alterations 
modulate CSC reprogramming and differentiation. Further, 
dynamic regulation of CSC reprogramming results in CSC 
plasticity and heterogeneity. Therefore, as this review suggests, 
the future direction for targeting CSCs should include both 
CSC and de novo CSC generation. Thus it must be based on 
recent findings of CSC plasticity and the comprehensive 
validations on the networks of related signaling pathways.
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