• 제목/요약/키워드: therapeutic molecules

검색결과 467건 처리시간 0.025초

Circular RNAs in and out of Cells: Therapeutic Usages of Circular RNAs

  • Mingyu Ju;Dayeon Kim;Geurim Son;Jinju Han
    • Molecules and Cells
    • /
    • 제46권1호
    • /
    • pp.33-40
    • /
    • 2023
  • RNAs are versatile molecules that are primarily involved in gene regulation and can thus be widely used to advance the fields of therapeutics and diagnostics. In particular, circular RNAs which are highly stable, have emerged as strong candidates for use on next-generation therapeutic platforms. Endogenous circular RNAs control gene regulatory networks by interacting with other biomolecules or through translation into polypeptides. Circular RNAs exhibit cell-type specific expression patterns, which can be altered in tissues and body fluids depending on pathophysiological conditions. Circular RNAs that are aberrantly expressed in diseases can function as biomarkers or therapeutic targets. Moreover, exogenous circular RNAs synthesized in vitro can be introduced into cells as therapeutic molecules to modulate gene expression networks in vivo. Depending on the purpose, synthetic circular RNA sequences can either be identical to endogenous circular RNA sequences or artificially designed. In this review, we introduce the life cycle and known functions of intracellular circular RNAs. The current stage of endogenous circular RNAs as biomarkers and therapeutic targets is also described. Finally, approaches and considerations that are important for applying the available knowledge on endogenous circular RNAs to design exogenous circular RNAs for therapeutic purposes are presented.

A non-replicating oncolytic vector as a novel therapeutic tool against cancer

  • Kaneda, Yasufumi
    • BMB Reports
    • /
    • 제43권12호
    • /
    • pp.773-780
    • /
    • 2010
  • Cancers are still difficult targets despite recent advances in cancer therapy. Due to the heterogeneity of cancer, a single-treatment modality is insufficient for the complete elimination of cancer cells. Therapeutic strategies from various aspects are needed. Gene therapy has been expected to bring a breakthrough to cancer therapy, but it has not yet been successful. Gene therapy also should be combined with other treatments to enhance multiple therapeutic pathways. In this view, gene delivery vector itself should be equipped with intrinsic anti-cancer activities. HVJ (hemagglutinating virus of Japan; Sendai virus) envelope vector (HVJ-E) was developed to deliver therapeutic molecules. HVJ-E itself possessed anti-tumor activities such as the generation of anti-tumor immunities and the induction of cancer-selective apoptosis. In addition to the intrinsic anti-tumor activities, therapeutic molecules incorporated into HVJ-E enabled to achieve multi-modal therapeutic strategies in cancer treatment. Tumor-targeting HVJ-E was also developed. Thus, HVJ-E will be a novel promising tool for cancer treatment.

Modulation of Immunosuppression by Oligonucleotide-Based Molecules and Small Molecules Targeting Myeloid-Derived Suppressor Cells

  • Lim, Jihyun;Lee, Aram;Lee, Hee Gu;Lim, Jong-Seok
    • Biomolecules & Therapeutics
    • /
    • 제28권1호
    • /
    • pp.1-17
    • /
    • 2020
  • Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exert suppressive function on the immune response. MDSCs expand in tumor-bearing hosts or in the tumor microenvironment and suppress T cell responses via various mechanisms, whereas a reduction in their activities has been observed in autoimmune diseases or infections. It has been reported that the symptoms of various diseases, including malignant tumors, can be alleviated by targeting MDSCs. Moreover, MDSCs can contribute to patient resistance to therapy using immune checkpoint inhibitors. In line with these therapeutic approaches, diverse oligonucleotide-based molecules and small molecules have been evaluated for their therapeutic efficacy in several disease models via the modulation of MDSC activity. In the current review, MDSC-targeting oligonucleotides and small molecules are briefly summarized, and we highlight the immunomodulatory effects on MDSCs in a variety of disease models and the application of MDSC-targeting molecules for immuno-oncologic therapy.

γ-Irradiation Induced Adhesion Molecules are Reduced by Vitamin C in Human Endothelial Cells

  • Son, Eun-Wha;Kim, Byung-Oh;Pyo, Suh-Kneung
    • Biomolecules & Therapeutics
    • /
    • 제12권3호
    • /
    • pp.145-150
    • /
    • 2004
  • Inflammation is a frequent radiation-induced reaction following therapeutic irradiation. Treatment of human umbilical endothelial cells (HUVEC) with ${\gamma}$-irradiation (${\gamma}$IR) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Since the upregulation of these proteins on endothelial cell Surface has been known to be associated with inflammation, interfering with the expression of adhesion molecules is an important therapeutic target. In the present study, we demonstrate that vitamin C inhibits ${\gamma}$IR induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose- and time dependent manner. Vitamin C a1so inhibited the production of Nitric oxide (NO) induced by ${\gamma}$IR. These data suggest that vitamin C has therapeutic potential for the treatment of various inflammatory disorder associated with an increase of endothelial leukocyte adhesion molecules.

Manufacturing Therapeutic Exosomes: from Bench to Industry

  • Ahn, So-Hee;Ryu, Seung-Wook;Choi, Hojun;You, Sangmin;Park, Jun;Choi, Chulhee
    • Molecules and Cells
    • /
    • 제45권5호
    • /
    • pp.284-290
    • /
    • 2022
  • Exosome, a type of nanoparticles also known as small extracellular vesicles are gaining attention as novel therapeutics for various diseases because of their ability to deliver genetic or bioactive molecules to recipient cells. Although many pharmaceutical companies are gradually developing exosome therapeutics, numerous hurdles remain regarding manufacture of clinical-grade exosomes for therapeutic use. In this mini-review, we will discuss the manufacturing challenges of therapeutic exosomes, including cell line development, upstream cell culture, and downstream purification process. In addition, developing proper formulations for exosome storage and, establishing good manufacturing practice facility for producing therapeutic exosomes remains as challenges for developing clinical-grade exosomes. However, owing to the lack of consensus regarding the guidelines for manufacturing therapeutic exosomes, close communication between regulators and companies is required for the successful development of exosome therapeutics. This review shares the challenges and perspectives regarding the manufacture and quality control of clinical grade exosomes.

Allicin Reduces Adhesion Molecules and NO Production Induced by γ-irradiation in Human Endothelial Cells

  • Son, Eun-Wha;Cho, Chul-Koo;Pyo, Suhkneung
    • IMMUNE NETWORK
    • /
    • 제2권1호
    • /
    • pp.6-11
    • /
    • 2002
  • Background: Inflammation is a frequent reaction following therapeutic irradiation. Since the upregulation of adhesion molecules on endothelial cell surface is known to be associated with inflammation, the expression of adhesion molecules is an important therapeutic target. Methods: Treatment of human umbilical endothelial cells (HUVECs) with ${\gamma}$-irradiation (${\gamma}IR$) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Changes in the expression of these proteins on ${\gamma}$-irradiated HUVECs which had been treated previously with allicin were measured by ELISA. Results: In the present study, we demonstrate that allicin inhibits the ${\gamma}IR$ induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose-dependent manner. Allicin was also found to inhibit the ${\gamma}IR$ induced production of nitric oxide (NO). Conclusion: These data suggest that allicin has a therapeutic potential for the treatment of various inflammatory disorders associated with increase numbers of endothelial leukocyte adhesion molecules.

Characterization and function of human Ly-6/uPAR molecules

  • Kong, Hyun Kyung;Park, Jong Hoon
    • BMB Reports
    • /
    • 제45권11호
    • /
    • pp.595-603
    • /
    • 2012
  • Human Ly-6/uPAR molecules are a superfamily composed of two subfamilies; one is the membrane bound proteins with a GPI-anchor and the other are secreted proteins without the GPI-anchor. Ly-6/uPAR molecules have remarkable amino acid homology through a distinctive 8-10 cysteine-rich domain that is associated predominantly with O-linked glycans. These molecules are encoded by multiple tightly linked genes located on Chr. 8q23, and have a conserved genomic organization. Ly-6/uPAR molecules have an interesting expression pattern during hematopoiesis and on specific tumors indicating that Ly-6/uPAR molecules are associated with development of the immune system and carcinogenesis. Thus, Ly-6/uPAR molecules are useful antigens for diagnostic and therapeutic targets. This review summarizes our understanding of human Ly-6/uPAR molecules with regard to molecular structure as well as what is known about their function in normal and malignant tissues and suggest Ly-6/uPAR molecules as target antigens for cancer immunotherapy.

Effect of Rutin on Adhesion Molecules Expression and NO Production Induced by $\gamma$-irradiation in Human Endothelial cells

  • Son, Eun-Wha;Lee, Kang-Ro;Rhee, Dong-Kwon;Pyo, Suh-Kneung
    • Biomolecules & Therapeutics
    • /
    • 제9권3호
    • /
    • pp.156-161
    • /
    • 2001
  • Inflammation is a frequent radiation-induced following therapeutic irradiation. Treatment of human umbilical endothelial cells (HUVEC) with ${\gamma}$-irradiation (${\gamma}$IR) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Since the upregulation of these proteins on endothelial cell surface has been known to be associated with inflammation, interfering with the expression of adhesion molecules is an important therapeutic target. In the present study, we demonstrate that bioflavonoid rutin inhibits ${\gamma}$IR induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose- and time dependent manner. Rutin also inhibited ${\gamma}$IR induced production of NO. These data suggest that rutin has therapeutic potential for the treatment of various inflammatory disorder associated with an increase of endothelial leukocyte adhesion molecules.

  • PDF

Inhibition of $\gamma$-Irradiation Induced Adhesion Molecules and NO Production by Alginate in Human Endothelial Cells

  • Son, Eun-Wha;Cho, Chul-Koo;Rhee, Dong-Kwon;Pyo, Suhk-Neung
    • Archives of Pharmacal Research
    • /
    • 제24권5호
    • /
    • pp.466-471
    • /
    • 2001
  • Inflammation is a frequent radiation-induced reaction following therapeutic irradiation. Treatment of human umbilical endothelial cells (HUVEC) with $\gamma$-irradiation ($\gamma$IR) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (VCAM-1 ), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Since the upregulation of these proteins on endothelial cell surface has been known to be associated with inflammation, interioring with the expression of adhesion molecules is an important therapeutic target. In the present study, we demonstrate that high mannronic acid-containing alginate (HMA) inhibits $\gamma$IR induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose dependent manner. HMA also inhibited $\gamma$IR induced production of Nitric oxide (NO). These data suggest that HMA has therapeutic potential for the treatment of various inflammatory disorder associated with an increase of endothelial leukocyte adhesion molecules.

  • PDF

Chemically Induced Cellular Proteolysis: An Emerging Therapeutic Strategy for Undruggable Targets

  • Moon, Seonghyeon;Lee, Byung-Hoon
    • Molecules and Cells
    • /
    • 제41권11호
    • /
    • pp.933-942
    • /
    • 2018
  • Traditionally, small-molecule or antibody-based therapies against human diseases have been designed to inhibit the enzymatic activity or compete for the ligand binding sites of pathological target proteins. Despite its demonstrated effectiveness, such as in cancer treatment, this approach is often limited by recurring drug resistance. More importantly, not all molecular targets are enzymes or receptors with druggable 'hot spots' that can be directly occupied by active site-directed inhibitors. Recently, a promising new paradigm has been created, in which small-molecule chemicals harness the naturally occurring protein quality control machinery of the ubiquitin-proteasome system to specifically eradicate disease-causing proteins in cells. Such 'chemically induced protein degradation' may provide unprecedented opportunities for targeting proteins that are inherently undruggable, such as structural scaffolds and other non-enzymatic molecules, for therapeutic purposes. This review focuses on surveying recent progress in developing E3-guided proteolysis-targeting chimeras (PROTACs) and small-molecule chemical modulators of deubiquitinating enzymes upstream of or on the proteasome.