Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.12.773

A non-replicating oncolytic vector as a novel therapeutic tool against cancer  

Kaneda, Yasufumi (Division of Gene Therapy Science, Graduate School of Medicine, Osaka University)
Publication Information
BMB Reports / v.43, no.12, 2010 , pp. 773-780 More about this Journal
Abstract
Cancers are still difficult targets despite recent advances in cancer therapy. Due to the heterogeneity of cancer, a single-treatment modality is insufficient for the complete elimination of cancer cells. Therapeutic strategies from various aspects are needed. Gene therapy has been expected to bring a breakthrough to cancer therapy, but it has not yet been successful. Gene therapy also should be combined with other treatments to enhance multiple therapeutic pathways. In this view, gene delivery vector itself should be equipped with intrinsic anti-cancer activities. HVJ (hemagglutinating virus of Japan; Sendai virus) envelope vector (HVJ-E) was developed to deliver therapeutic molecules. HVJ-E itself possessed anti-tumor activities such as the generation of anti-tumor immunities and the induction of cancer-selective apoptosis. In addition to the intrinsic anti-tumor activities, therapeutic molecules incorporated into HVJ-E enabled to achieve multi-modal therapeutic strategies in cancer treatment. Tumor-targeting HVJ-E was also developed. Thus, HVJ-E will be a novel promising tool for cancer treatment.
Keywords
Anti-tumor immunity; Apoptosis; Cancer; Gene therapy; HVJ;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Morris, J. C. and Waldmann, T. A. (2009) Antibody-based therapy of leukaemia. Expert Rev. Mol. Med. 11, e29.   DOI   ScienceOn
2 Vallera, D. A, Chen, H., Sicheneder, A. R., Panoskaltsis-Mortari, A. and Taras, E. P. (2009) Genetic alteration of a bispecific ligand-directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic B cell malignancy. Leuk. Res. 33, 1233-1242.   DOI   ScienceOn
3 van Waarde, A., Rybczynska, A. A, Ramakrishnan, N., Ishiwata, K., Elsinga, P. H. and Dierckx, R. A. (2010) Sigma receptors in oncology: therapeutic and diagnostic applications of sigma ligands. Curr. Pharm. Des. In press.
4 Chono, S., Li, S. D., Conwell, C. C. and Huang, L. (2008) An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J. Control Release 131, 64-69.   DOI   ScienceOn
5 Clement, V., Dutoit, V., Marino, D., Dietrich, P. Y. and Radovanovic, I. (2009) Limits of CD133 as a marker of glioma self-renewing cells. Int. J. Cancer 125, 244-248.   DOI   ScienceOn
6 Hellums, E. K., Markert, J. M., Parker, J. N., He, B., Perbal, B., Roizman, B., Whitley, R. J., Langford, C. P., Bharara, S. and Gillespie, G. Y. (2005) Increased efficacy of an interleukin-12-secreting herpes simplex virus in a syngeneic intracranial murine glioma model. Neuro. Oncol. 7, 213-224.   DOI   ScienceOn
7 Matsuda, M., Nimura, K., Shimbo, T., Hamasaki, T., Yamamoto, T., Matsumura, A. and Kaneda, Y. (2010) Immunogene therapy using immunomodulating HVJ-E vector augments anti-tumor effects in murine malignant glioma. J. Neurooncol. In press.
8 Malek, T. R. and Bayer, A. L. (2004) Tolerance, not immunity, crucially depends on IL-2. Nat. Rev. Immunol. 4, 665-674.   DOI   ScienceOn
9 Furtado, G. C., Curotto de Lafaille, M. A., Kutchukhidze, N. and Lafaille, J. J. (2002) Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J. Exp. Med. 196, 851-857.   DOI
10 Kawachi, M., Tamai, K., Saga, K., Yamazaki, T., Fujita, H., Shimbo, T., Nimura, K., Nishifuji, K., Amagai, M., Uitto, J. and Kaneda, Y. (2007) Development of tissue-targeting HVJ envelope vector for successful delivery of therapeutic gene to mouse skin. Hum. Gene Ther. 18, 881-894.   DOI   ScienceOn
11 Shimbo, T., Kawachi, M., Saga, K., Fujita, H., Yamazaki, T., Tamai, K. and Kaneda, Y. (2007) Development of a transferrin receptor-targeting HVJ-E vector. Biochem. Biophys. Res. Comm. 364, 423-428.   DOI   ScienceOn
12 Saga, K., Tamai, K., Kawachi, M., Shimbo, T., Fujita, H., Yamazaki, T. and Kaneda, Y. (2008) Functional modification of Sendai virus by siRNA. J. Biotechnol. 133, 386-394.   DOI   ScienceOn
13 Kircheis, R. and Wagner, E. (2005) Transferrin receptortargeted gene delivery systems; in Polymeric Gene Delivery Amiji, M. M. (ed.), pp 537-556. CRC Press LLC, Florida, USA.
14 Sudimack, J. and Lee, R. J. (2000) Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 41, 147-162.   DOI   ScienceOn
15 Natsume, A., Mizuno, M., Ryuke, Y. and Yoshida, J. (1999) Antitumor effect and cellular immunity activation by murine interferon-beta gene transfer against intracerebral glioma in mouse. Gene Ther. 6, 1626-1633.   DOI   ScienceOn
16 Matsuda, M., Yamamoto, T., Matsumura, A. and Kaneda, Y. (2009) Highly efficient eradication of intracranial glioblastoma using Eg5 siRNA combined with HVJ envelope. Gene Ther. 16, 1465-1476.   DOI   ScienceOn
17 Lefranc, F., Cool, V., Velu, T., Brotchi, J. and De Witte, O. (2002) Granulocyte macrophage-colony stimulating factor gene transfer to induce a protective anti-tumoral immune response against the 9 L rat gliosarcoma model. Int. J. Oncol. 20, 1077-1085
18 Pan, D., Wei, X., Liu, M., Feng, S., Tian, X., Feng, X. and Zhang, X. (2009) Adenovirus mediated transfer of p53, GM-CSF and B7-1 suppresses growth and enhances immunogenicity of glioma cells. Neurol. Res. doi: 10.1179/174313209X455736.   DOI   ScienceOn
19 Meijer, D. H., Maguire, C. A., LeRoy, S. G. and Sena-Esteves, M. (2009) Controlling brain tumor growth by intraventricular administration of an AAV vector encoding IFN-beta. Cancer Gene Ther. 16, 664-671.   DOI   ScienceOn
20 Glick, R. P., Lichtor, T., de Zoeten, E., Deshmukh, P. and Cohen, E. P (1999) Prolongation of survival of mice with glioma treated with semiallogeneic fibroblasts secreting interleukin-2. Neurosurgery 45, 867-874.   DOI
21 Iwadate, Y., Inoue, M., Saegusa, T., Tokusumi, Y., Kinoh, H., Hasegawa, M., Tagawa, M., Yamaura, A., Shimada, H. (2005) Recombinant Sendai virus vector induces complete remission of established brain tumors through efficient interleukin-2 gene transfer in vaccinated rats. Clin. Cancer Res. 11, 3821-3827.   DOI   ScienceOn
22 Suzuki, H., Kurooka, M., Hiroaki, Y., Fujiyoshi, Y. and Kaneda, Y. (2008) Sendai virus F glycoprotein induces IL-6 production in dendritic cells in a fusion-independent manner. FEBS Letter 582, 1325-1329.   DOI   ScienceOn
23 Liu, Y., Ehtesham, M., Samoto, K., Wheeler, C. J., Thompson, R. C., Villarreal, L. P., Black, K. L. and Yu, J. S. (2002) In situ adenoviral interleukin 12 gene transfer confers potent and long-lasting cytotoxic immunity in glioma. Cancer Gene Ther. 9, 9-15.   DOI   ScienceOn
24 Seth, R. B., Sun, L., Ea, C. K. and Chen, Z. J. (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669-682.   DOI   ScienceOn
25 Tang, E. D. and Wang, C. Y. (2010) TRAF5 is a down-stream target of MAVS in antiviral innate immune signaling. PLoS One 5(2), e9172.   DOI   ScienceOn
26 Kawaguchi, Y., Miyamoto, Y., Inoue, T. and Kaneda, Y. (2009) Efficient eradication of hormone-resistant human prostate cancers by inactivated Sendai virus particle. Int. J. Cancer 124, 2478-2487.   DOI   ScienceOn
27 Sadler, J. and Williams, B. R. G. (2008) Interferon-inducible antiviral effects. Nat. Rev. Immunology. 8, 559-568.   DOI   ScienceOn
28 Platanias, L. C. and Fish, E. N. (1999) Signaling pathways activated by interferons. Exp. Hematol. 11, 1583-1592.
29 Tanaka, M., Shimbo, T., Kikuchi, Y., Matsuda, M. and Kaneda, Y. (2010) Sterile alpha motif containing domain 9 (SAMD9) is involved in death signaling of malignant glioma treated with inactivated Sendai virus particle (HVJ-E) or type I interferon. Int. J. Cancer 126, 1982-1991.
30 Ito, M., Yamamoto, S., Nimura, K., Hiraoka, K., Tamai, K. and Kaneda, Y. (2005) Rad51 siRNA delivered by HVJ envelope vector enhances the anticancer effect of cisplatin J. Gene Med. 7, 1044-1052.   DOI   ScienceOn
31 Kaneda, Y. (2008) Applications on hemagglutinating virus of Japan in therapeutic delivery system. Expert Opinion Drug Delivery 5, 221-233.   DOI   ScienceOn
32 Blangy, A., Lane, H. A., d'Herin, P., Harper, M., Kress, M. and Nigg, E. A. (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159-1169.   DOI   ScienceOn
33 Okada, Y. (1993) Sendai virus-induced cell fusion; in Methods in Enzymology volume 221, Duzgunes N, (ed.). pp 18-41. Academic Press, Inc., San Diego, USA.
34 Kaneda, Y., Saeki, Y. and Morishita, R. (1999) Gene therapy using HVJ-liposomes; the best of both worlds. Mol. Med. Today 5, 298-303.   DOI   ScienceOn
35 Kaneda, Y., Nakajima, T. and Yamamoto, S. (2005) Development of HVJ envelope vector and its application to gene therapy. Adv. Genet. 53PA, 307-332.
36 Kurooka, M. and Kaneda, Y. (2007) Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells. Cancer Res. 67, 227-236.   DOI   ScienceOn
37 Fujihara, A., Kurooka, M., Miki, T. and Kaneda Y. (2008) Intratumoral injection of inactivated Sendai virus particles elicits strong antitumor activity by enhancing local CXCL10 expression and systemic NK cell activation. Cancer Immunol. Immunother. 57, 73-84.   DOI
38 Pasare, C. and Medzhitov, R. (2003)Toll pathway-dependent blockade of $CD4^+CD25^+$ T cell-mediated suppression by dendritic cells. Science 299, 1033-1036.   DOI   ScienceOn
39 Lal, G., Zhang, N., van der Touw, W., Ding, Y., Ju, W., Bottinger, E. P., Reid, S. P., Levy, D. E. and Bromberg, J. S. (2009) Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J. Immunol. 182, 259-273.   DOI
40 Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K. J., Yamaguchi, O., Otsu, K., Tsujimura, T., Koh, C. S., Sousa, C. R., Matsuura, Y., Fujita, T. and Akira, S. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101-105.   DOI   ScienceOn
41 Kim, R., Emi, M. and Tanabe, K. (2006) Cancer immuno-suppression and autoimmune disease: beyond immuno-suppressive network for tumor immunity. Immunology 119, 254-264.   DOI   ScienceOn
42 Dudley, M. E., Yang, J. C., Sherry, R., Hughes, M. S., Royal, R., Kammula, U., Robbins, P. F., Huang, J., Citrin, D. E., Leitman, S. F., Wunderlich, J., Restifo, N. P., Thomasian, A., Downey, S. G., Smith, F. O., Klapper, J., Morton, K., Laurencot, C., White, D. E. and Rosenberg, S. A. (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin. Oncol. 26, 5233-5239.   DOI   ScienceOn
43 Kirkwood, J. M., Tarhini, A. A., Panelli, M. C., Moschos, S. J., Zarour, H. M., Butterfield, L. H. and Gogas, H. J. (2008) Next generation of immunotherapy for melanoma. J. Clin. Oncol. 20, 3445-3455.
44 Samuel, M., Chow, P. K., Chan, Shih-Yen, E., Machin, D. and Soo, K. C. (2009) Neoadjuvant and adjuvant therapy for surgical resection of hepatocellular carcinoma. Database Syst. Rev. Jan. 21(1), CD001199.
45 Kelly, E. and Russell, S. J. (2007) History of oncolytic viruses: genesis to genetic engineering. Mol. Ther. 15, 651-659.   DOI
46 Liu, T. C. and Kirn, D. (2008) Gene therapy progress and prospects cancer: oncolytic viruses. Gene Ther. 15, 877-884.   DOI   ScienceOn
47 Kirn, D. H. and Thorne, S. H. (2009) Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat. Rev. Cancer 9, 64-71.   DOI   ScienceOn
48 Moon, C., Oh, Y. and Roth, J. A. (2003) Current status of gene therapy for lung cancer and head and neck cancer. Clin. Cancer Res. 9, 5055-5067.
49 Kaneda, Y., Nakajima, T., Nishikawa, T., Yamamoto, S., Ikegami, H., Suzuki, N., Nakamura, H., Morishita, R. and Kotani, H. (2002) HVJ (hemagglutinating virus of Japan) envelope vector as a versatile gene delivery system. Mol. Ther. 6, 219-226.   DOI   ScienceOn
50 Kaneda, Y. (2010) Update on non-viral delivery methods for cancer therapy; possibilities of DDS with anti-cancer activities beyond delivery as a new therapeutic tool. Expert Opinion Drug Delivery 9, 1079-1093
51 Fujiwara, T., Tanaka, N., Kanazawa, S., Ohtani, S., Saijo, Y., Nukiwa, T., Yoshimura, K., Sato, T., Eto, Y., Chada, S., Nakamura, H. and Kato, H. (2006) Multicenter phase I study of repeated intratumoral delivery of adenoviral p53 in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 24, 1689-1699.   DOI   ScienceOn
52 O'Neill, D. and Bhardwaj, N. (2005) Exploiting dendritic cells for active immunotherapy of cancer and chronic infection. Methods Mol. Med. 109, 1-18.