Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0372

Chemically Induced Cellular Proteolysis: An Emerging Therapeutic Strategy for Undruggable Targets  

Moon, Seonghyeon (Department of New Biology, DGIST)
Lee, Byung-Hoon (Department of New Biology, DGIST)
Abstract
Traditionally, small-molecule or antibody-based therapies against human diseases have been designed to inhibit the enzymatic activity or compete for the ligand binding sites of pathological target proteins. Despite its demonstrated effectiveness, such as in cancer treatment, this approach is often limited by recurring drug resistance. More importantly, not all molecular targets are enzymes or receptors with druggable 'hot spots' that can be directly occupied by active site-directed inhibitors. Recently, a promising new paradigm has been created, in which small-molecule chemicals harness the naturally occurring protein quality control machinery of the ubiquitin-proteasome system to specifically eradicate disease-causing proteins in cells. Such 'chemically induced protein degradation' may provide unprecedented opportunities for targeting proteins that are inherently undruggable, such as structural scaffolds and other non-enzymatic molecules, for therapeutic purposes. This review focuses on surveying recent progress in developing E3-guided proteolysis-targeting chimeras (PROTACs) and small-molecule chemical modulators of deubiquitinating enzymes upstream of or on the proteasome.
Keywords
deubiquitinating enzyme; induced proteolysis; PROTAC; small-molecules; ubiquitin-proteasome system; undruggable target;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gustafson, J.L., Neklesa, T.K., Cox, C.S., Roth, A.G., Buckley, D.L., Tae, H.S., Sundberg, T.B., Stagg, D.B., Hines, J., McDonnell, D.P., et al. (2015). Small-Molecule-Mediated Degradation of the Androgen Receptor through Hydrophobic Tagging. Angew. Chem. Int. Ed. Engl. 54, 9659-9662.   DOI
2 Harrigan, J.A., Jacq, X., Martin, N.M., and Jackson, S.P. (2018). Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat. Rev. Drug Discov. 17, 57-77.
3 Reverdy, C., Conrath, S., Lopez, R., Planquette, C., Atmanene, C., Collura, V., Harpon, J., Battaglia, V., Vivat, V., Sippl, W., et al. (2012). Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme. Chem. Biol. 19, 467-477.   DOI
4 Itoh, Y., Ishikawa, M., Naito, M., and Hashimoto, Y. (2010). Protein Knockdown Using Methyl Bestatin-Ligand Hybrid Molecules: Design and Synthesis of Inducers of Ubiquitination-Mediated Degradation of Cellular Retinoic Acid-Binding Proteins. J. Am. Chem. Soc. 132, 5820-5826.   DOI
5 Henning, R.K., Varghese, J.O., Das, S., Nag, A., Tang, G., Tang, K., Sutherland, A.M., and Heath, J.R. (2016). Degradation of Akt using protein-catalyzed capture agents. J. Pept. Sci. 22, 196-200.   DOI
6 Hines, J., Gough, J.D., Corson, T.W., and Crews, C.M. (2013). Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. P. Natl. Acad. Sci. USA 110, 8942-8947.   DOI
7 Huang, X., and Dixit, V.M. (2016). Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 26, 484-498.   DOI
8 Itoh, Y., Kitaguchi, R., Ishikawa, M., Naito, M., and Hashimoto, Y. (2011). Design, synthesis and biological evaluation of nuclear receptor-degradation inducers. Bioorg. Med. Chem. 19, 6768-6778.   DOI
9 Jiang, Y., Deng, Q., Zhao, H., Xie, M., Chen, L., Yin, F., Qin, X., Zheng, W., Zhao, Y., and Li, Z. (2018). Development of Stabilized Peptide-Based PROTACs against Estrogen Receptor alpha. ACS Chem. Biol. 13, 628-635.   DOI
10 Richardson, P.G., Sonneveld, P., Schuster, M.W., Irwin, D., Stadtmauer, E.A., Facon, T., Harousseau, J.L., Ben-Yehuda, D., Lonial, S., Goldschmidt, H., et al. (2005). Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 352, 2487-2498.   DOI
11 Robb, C.M., Contreras, J.I., Kour, S., Taylor, M.A., Abid, M., Sonawane, Y.A., Zahid, M., Murry, D.J., Natarajan, A., and Rana, S. (2017). Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem. Commun. (Camb.) 53, 7577-7580.   DOI
12 Rodriguez-Gonzalez, A., Cyrus, K., Salcius, M., Kim, K., Crews, C.M., Deshaies, R.J., and Sakamoto, K.M. (2008). Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene 27, 7201-7211.   DOI
13 Ross, C.A., and Poirier, M.A. (2004). Protein aggregation and neurodegenerative disease. Nat. Med. 10 Suppl, S10-17.   DOI
14 Sacco, J.J., Coulson, J.M., Clague, M.J., and Urbe, S. (2010). Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life 62, 140-157.
15 Sakamoto, K.M., Kim, K.B., Kumagai, A., Mercurio, F., Crews, C.M., and Deshaies, R.J. (2001). Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. P. Natl. Acad. Sci. USA 98, 8554-8559.   DOI
16 Salami, J., and Crews, C.M. (2017). Waste disposal-An attractive strategy for cancer therapy. Science 355, 1163-1167.   DOI
17 Bondeson, D.P., Mares, A., Smith, I.E.D., Ko, E., Campos, S., Miah, A.H., Mulholland, K.E., Routly, N., Buckley, D.L., Gustafson, J.L., et al. (2015). Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611-U120.   DOI
18 Kapuria, V., Peterson, L.F., Fang, D., Bornmann, W.G., Talpaz, M., and Donato, N.J. (2010). Deubiquitinase Inhibition by Small-Molecule WP1130 Triggers Aggresome Formation and Tumor Cell Apoptosis. Cancer Res. 70, 9265-9276.   DOI
19 Abdul Rehman, Syed A., Kristariyanto Yosua, A., Choi, S.Y., Nkosi, P.J., Weidlich, S., Labib, K., Hofmann, K., and Kulathu, Y. (2016). MINDY-1 Is a Member of an Evolutionarily Conserved and Structurally Distinct New Family of Deubiquitinating Enzymes. Mol. Cell 63, 146-155.   DOI
20 Bingol, B., Tea, J.S., Phu, L., Reichelt, M., Bakalarski, C.E., Song, Q., Foreman, O., Kirkpatrick, D.S., and Sheng, M. (2014). The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370-375.   DOI
21 Komander, D., and Rape, M. (2012). The ubiquitin code. Annu. Rev. Biochem. 81, 203-229.   DOI
22 Kategaya, L., Di Lello, P., Rouge, L., Pastor, R., Clark, K.R., Drummond, J., Kleinheinz, T., Lin, E., Upton, J.P., Prakash, S., et al. (2017). USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature 550, 534-538.   DOI
23 Kluge, A.F., Lagu, B.R., Maiti, P., Jaleel, M., Webb, M., Malhotra, J., Mallat, A., Srinivas, P.A., and Thompson, J.E. (2018). Novel highly selective inhibitors of ubiquitin specific protease 30 (USP30) accelerate mitophagy. Bioorg. Med. Chem. Letters 28, 2655-2659.   DOI
24 Komander, D., Clague, M.J., and Urbe, S. (2009). Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550-563.   DOI
25 Lai, A.C., and Crews, C.M. (2017). Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101-114.   DOI
26 Lai, A.C., Toure, M., Hellerschmied, D., Salami, J., Jaime-Figueroa, S., Ko, E., Hines, J., and Crews, C.M. (2016). Modular PROTAC Design for the Degradation of Oncogenic BCR-ABL. Angew. Chem. Int. Ed. Engl. 55, 807-810.   DOI
27 Lamberto, I., Liu, X., Seo, H.S., Schauer, N.J., Iacob, R.E., Hu, W., Das, D., Mikhailova, T., Weisberg, E.L., Engen, J.R., et al. (2017). Structure-Guided Development of a Potent and Selective Non-covalent Active-Site Inhibitor of USP7. Cell Chem. Biol. 24, 1490-1500 e1411.   DOI
28 Schneekloth, J.S., Jr., Fonseca, F.N., Koldobskiy, M., Mandal, A., Deshaies, R., Sakamoto, K., and Crews, C.M. (2004). Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc. 126, 3748-3754.   DOI
29 Schiedel, M., Herp, D., Hammelmann, S., Swyter, S., Lehotzky, A., Robaa, D., Olah, J., Ovadi, J., Sippl, W., and Jung, M. (2018). Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals). J. Med. Chem. 61, 482-491.   DOI
30 Schneekloth, A.R., Pucheault, M., Tae, H.S., and Crews, C.M. (2008). Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorg. Med. Chem. Lett. 18, 5904-5908.   DOI
31 Shangary, S., Qin, D., McEachern, D., Liu, M., Miller, R.S., Qiu, S., Nikolovska-Coleska, Z., Ding, K., Wang, G., Chen, J., et al. (2008). Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc. Natl. Acad. Sci. USA 105, 3933-3938.   DOI
32 Stewart, A.K., Rajkumar, S.V., Dimopoulos, M.A., Masszi, T., Spicka, I., Oriol, A., Hajek, R., Rosinol, L., Siegel, D.S., Mihaylov, G.G., et al. (2015). Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 372, 142-152.   DOI
33 Tian, X., Isamiddinova, N.S., Peroutka, R.J., Goldenberg, S.J., Mattern, M.R., Nicholson, B., and Leach, C. (2011). Characterization of selective ubiquitin and ubiquitin-like protease inhibitors using a fluorescence-based multiplex assay format. Assay. Drug Dev. Technol. 9, 165-173.   DOI
34 Chan, A.I., McGregor, L.M., and Liu, D.R. (2015). Novel selection methods for DNA-encoded chemical libraries. Curr. Opin. Chem. Biol. 26, 55-61.   DOI
35 Tomoshige, S., Naito, M., Hashimoto, Y., and Ishikawa, M. (2015). Degradation of HaloTag-fused nuclear proteins using bestatin-HaloTag ligand hybrid molecules. Org. Biomol. Chem. 13, 9746-9750.   DOI
36 Boselli, M., Lee, B.H., Robert, J., Prado, M.A., Min, S.W., Cheng, C., Silva, M.C., Seong, C., Elsasser, S., Hatle, K.M., et al. (2017). An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons. J. Biol. Chem. 292, 19209-19225.   DOI
37 Buckley, D.L., Raina, K., Darricarrere, N., Hines, J., Gustafson, J.L., Smith, I.E., Miah, A.H., Harling, J.D., and Crews, C.M. (2015). HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. ACS Chem. Biol. 10, 1831-1837.   DOI
38 Buhimschi, A.D., Armstrong, H.A., Toure, M., Jaime-Figueroa, S., Chen, T.L., Lehman, A.M., Woyach, J.A., Johnson, A.J., Byrd, J.C., and Crews, C.M. (2018). Targeting the C481S Ibrutinib-Resistance Mutation in Bruton's Tyrosine Kinase Using PROTAC-Mediated Degradation. Biochemistry-Us 57, 3564-3575.   DOI
39 Burslem, G.M., Smith, B.E., Lai, A.C., Jaime-Figueroa, S., McQuaid, D.C., Bondeson, D.P., Toure, M., Dong, H.Q., Qian, Y.M., Wang, J., et al. (2018). The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell Chemical Biology 25, 67-77.   DOI
40 Chan, C.H., Morrow, J.K., Li, C.F., Gao, Y., Jin, G., Moten, A., Stagg, L.J., Ladbury, J.E., Cai, Z., Xu, D., et al. (2013). Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154, 556-568.   DOI
41 Liang, J.R., Martinez, A., Lane, J.D., Mayor, U., Clague, M.J., and Urbe, S. (2015). USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. Embo. Rep. 16, 618-627.   DOI
42 Lee, B.H., Lee, M.J., Park, S., Oh, D.C., Elsasser, S., Chen, P.C., Gartner, C., Dimova, N., Hanna, J., Gygi, S.P., et al. (2010). Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179-U163.   DOI
43 Lee, B.H., Lu, Y., Prado, M.A., Shi, Y., Tian, G., Sun, S., Elsasser, S., Gygi, S.P., King, R.W., and Finley, D. (2016). USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites. Nature 532, 398-401.   DOI
44 Li, J., Yakushi, T., Parlati, F., Mackinnon, A.L., Perez, C., Ma, Y., Carter, K.P., Colayco, S., Magnuson, G., Brown, B., et al. (2017). Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat. Chem. Biol. 13, 486-493.   DOI
45 Liu, N., Liu, C., Li, X., Liao, S., Song, W., Yang, C., Zhao, C., Huang, H., Guan, L., Zhang, P., et al. (2014a). A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases. Sci. Rep. 4, 5240.
46 Liu, N.N., Li, X.F., Huang, H.B., Zhao, C., Liao, S.Y., Yang, C.S., Liu, S.T., Song, W.B., Lu, X.Y., Lan, X.Y., et al. (2014b). Clinically used antirheumatic agent auranofin is a proteasomal deubiquitinase inhibitor and inhibits tumor growth. Oncotarget 5, 5453-5471.
47 Wang, X., Feng, S., Fan, J., Li, X., Wen, Q., and Luo, N. (2016a). New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation. Biochem. Pharmacol. 116, 200-209.   DOI
48 Turnbull, A.P., Ioannidis, S., Krajewski, W.W., Pinto-Fernandez, A., Heride, C., Martin, A.C.L., Tonkin, L.M., Townsend, E.C., Buker, S.M., Lancia, D.R., et al. (2017). Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature 550, 481-486.   DOI
49 Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., et al. (2004). In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2. 303, 844-848.   DOI
50 Wang, X., D'Arcy, P., Caulfield, T.R., Paulus, A., Chitta, K., Mohanty, C., Gullbo, J., Chanan-Khan, A., and Linder, S. (2015). Synthesis and evaluation of derivatives of the proteasome deubiquitinase inhibitor b-AP15. Chem. Biol. Drug Des. 86, 1036-1048.   DOI
51 Wang, X., Mazurkiewicz, M., Hillert, E.K., Olofsson, M.H., Pierrou, S., Hillertz, P., Gullbo, J., Selvaraju, K., Paulus, A., Akhtar, S., et al. (2016b). The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells. Sci Rep-Uk 6, 26979.   DOI
52 Yang, K., Song, Y., Xie, H., Wu, H., Wu, Y.T., Leisten, E.D., and Tang, W. (2018). Development of the first small molecule histone deacetylase 6 (HDAC6) degraders. Bioorg. Med. Chem. Lett. 28, 2493-2497.   DOI
53 Chauhan, D., Tian, Z., Nicholson, B., Kumar, K.G., Zhou, B., Carrasco, R., McDermott, J.L., Leach, C.A., Fulcinniti, M., Kodrasov, M.P., et al. (2012). A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 22, 345-358.   DOI
54 Liu, Y.C., Lashuel, H.A., Choi, S., Xing, X.C., Case, A., Ni, J., Yeh, L.A., Cuny, G.D., Stein, R.L., and Lansbury, P.T. (2003). Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Chem. Biol. 10, 837-846.   DOI
55 Long, M.J., Gollapalli, D.R., and Hedstrom, L. (2012). Inhibitor mediated protein degradation. Chem. Biol. 19, 629-637.   DOI
56 Weathington, N.M., and Mallampalli, R.K. (2014). Emerging therapies targeting the ubiquitin proteasome system in cancer. J. Clin. Invest. 124, 6-12.   DOI
57 Weinstock, J., Wu, J., Cao, P., Kingsbury, W.D., McDermott, J.L., Kodrasov, M.P., McKelvey, D.M., Suresh Kumar, K.G., Goldenberg, S.J., Mattern, M.R., et al. (2012). Selective Dual Inhibitors of the Cancer-Related Deubiquitylating Proteases USP7 and USP47. ACS Med. Chem. Lett. 3, 789-792.   DOI
58 Wilkinson, K.D. (1997). Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 11, 1245-1256.   DOI
59 Winter, G.E., Buckley, D.L., Paulk, J., Roberts, J.M., Souza, A., DhePaganon, S., and Bradner, J.E. (2015). Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376-1381.   DOI
60 Xie, T., Lim, S.M., Westover, K.D., Dodge, M.E., Ercan, D., Ficarro, S.B., Udayakumar, D., Gurbani, D., Tae, H.S., Riddle, S.M., et al. (2014). Pharmacological targeting of the pseudokinase Her3. Nat. Chem. Biol. 10, 1006-1012.   DOI
61 Yue, W., Chen, Z., Liu, H., Yan, C., Chen, M., Feng, D., Yan, C., Wu, H., Du, L., Wang, Y., et al. (2014). A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Cell Res. 24, 482-496.   DOI
62 Zengerle, M., Chan, K.H., and Ciulli, A. (2015). Selective Small Molecule Induced Degradation of the BET Bromodomain Protein BRD4. Acs. Chem. Biol. 10, 1770-1777.   DOI
63 Zhang, C., Han, X.R., Yang, X., Jiang, B., Liu, J., Xiong, Y., and Jin, J. (2018). Proteolysis Targeting Chimeras (PROTACs) of Anaplastic Lymphoma Kinase (ALK). Eur. J. Med. Chem. 151, 304-314.   DOI
64 Clague, M.J., Barsukov, I., Coulson, J.M., Liu, H., Rigden, D.J., and Urbe, S. (2013). Deubiquitylases from genes to organism. Physiol. Rev. 93, 1289-1315.   DOI
65 Chen, J., Dexheimer, T.S., Ai, Y., Liang, Q., Villamil, M.A., Inglese, J., Maloney, D.J., Jadhav, A., Simeonov, A. and Zhuang, Z. (2011). Selective and cell-active inhibitors of the USP1/ UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem. Biol. 18, 1390-1400.   DOI
66 Chu, T.T., Gao, N., Li, Q.Q., Chen, P.G., Yang, X.F., Chen, Y.X., Zhao, Y.F., and Li, Y.M. (2016). Specific Knockdown of Endogenous Tau Protein by Peptide-Directed Ubiquitin-Proteasome Degradation. Cell Chem. Biol. 23, 453-461.   DOI
67 Ciechanover, A. (2005). Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol. 6, 79-87.   DOI
68 Coleman, K.G., and Crews, C.M. (2018). Proteolysis-Targeting Chimeras: Harnessing the Ubiquitin-Proteasome System to Induce Degradation of Specific Target Proteins. Annual Review of Cancer Biology 2, 41-58.   DOI
69 Zhou, P. (2005). Targeted protein degradation. Curr. Opin. Chem. Biol. 9, 51-55.   DOI
70 Zhou, B., Hu, J., Xu, F., Chen, Z., Bai, L., Fernandez-Salas, E., Lin, M., Liu, L., Yang, C.Y., Zhao, Y., et al. (2018). Discovery of a Small-Molecule Degrader of Bromodomain and Extra-Terminal (BET) Proteins with Picomolar Cellular Potencies and Capable of Achieving Tumor Regression. J. Med. Chem. 61, 462-481.   DOI
71 Farshi, P., Deshmukh, R.R., Nwankwo, J.O., Arkwright, R.T., Cvek, B., Liu, J., and Dou, Q.P. (2015). Deubiquitinases (DUBs) and DUB inhibitors: a patent review. Expert Opin. Ther. Pat. 25, 1191-1208.   DOI
72 Colland, F., Formstecher, E., Jacq, X., Reverdy, C., Planquette, C., Conrath, S., Trouplin, V., Bianchi, J., Aushev, V.N., Camonis, J., et al. (2009). Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells. Mol. Cancer Ther. 8, 2286-2295.   DOI
73 Crew, A.P., Raina, K., Dong, H., Qian, Y., Wang, J., Vigil, D., Serebrenik, Y.V., Hamman, B.D., Morgan, A., Ferraro, C., et al. (2018). Identification and Characterization of Von Hippel-Lindau-Recruiting Proteolysis Targeting Chimeras (PROTACs) of TANK-Binding Kinase 1. J. Med. Chem. 61, 583-598.   DOI
74 D'Arcy, P., Brnjic, S., Olofsson, M.H., Fryknas, M., Lindsten, K., De Cesare, M., Perego, P., Sadeghi, B., Hassan, M., Larsson, R., et al. (2011). Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat. Med. 17, 1636-1640.   DOI
75 Deshaies, R.J., and Joazeiro, C.A. (2009). RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399-434.   DOI
76 Dexheimer, T.S., Rosenthal, A.S., Luci, D.K., Liang, Q., Villamil, M.A., Chen, J., Sun, H., Kerns, E.H., Simeonov, A., Jadhav, A., et al. (2014). Synthesis and structure-activity relationship studies of N-benzyl-2-phenylpyrimidin-4-amine derivatives as potent USP1/UAF1 deubiquitinase inhibitors with anticancer activity against nonsmall cell lung cancer. J. Med. Chem. 57, 8099-8110.   DOI
77 Finley, D. (2009). Recognition and Processing of Ubiquitin-Protein Conjugates by the Proteasome. Annual Review of Biochemistry 78, 477-513.   DOI
78 Lu, M., Liu, T., Jiao, Q., Ji, J., Tao, M., Liu, Y., You, Q., and Jiang, Z. (2018). Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. Eur. J. Med. Chem.146, 251-259.   DOI
79 Manasanch, E.E., and Orlowski, R.Z. (2017). Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 14, 417.   DOI
80 Mistry, H., Hsieh, G., Buhrlage, S.J., Huang, M., Park, E., Cuny, G.D., Galinsky, I., Stone, R.M., Gray, N.S., D'Andrea, A.D., et al. (2013). Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells. Mol. Cancer Ther. 12, 2651-2662.   DOI
81 Finley, D., and Chau, V. (1991). Ubiquitination. Annu. Rev. Cell. Biol. 7, 25-69.   DOI
82 Fraile, J.M., Quesada, V., Rodriguez, D., Freije, J.M., and Lopez-Otin, C. (2012). Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 31, 2373-2388.   DOI
83 Gavory, G., O'Dowd, C.R., Helm, M.D., Flasz, J., Arkoudis, E., Dossang, A., Hughes, C., Cassidy, E., McClelland, K., Odrzywol, E., et al. (2018). Discovery and characterization of highly potent and selective allosteric USP7 inhibitors. Nat. Chem. Biol. 14, 118-125.   DOI
84 Gopinath, P., Ohayon, S., Nawatha, M., and Brik, A. (2016). Chemical and semisynthetic approaches to study and target deubiquitinases. Chem. Soc. Rev. 45, 4171-4198.   DOI
85 de Poot, S.A.H., Tian, G., and Finley, D. (2017). Meddling with Fate: The Proteasomal Deubiquitinating Enzymes. J. Mol. Biol. 429, 3525-3545.   DOI
86 Popovic, D., Vucic, D., and Dikic, I. (2014). Ubiquitination in disease pathogenesis and treatment. Nat. Med. 20, 1242-1253.   DOI
87 Neklesa, T.K., Tae, H.S., Schneekloth, A.R., Stulberg, M.J., Corson, T.W., Sundberg, T.B., Raina, K., Holley, S.A., and Crews, C.M. (2011). Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins. Nat. Chem. Biol. 7, 538-543.   DOI
88 Neklesa, T.K., Winkler, J.D., and Crews, C.M. (2017). Targeted protein degradation by PROTACs. Pharmacol. Ther. 174, 138-144.   DOI
89 Ohoka, N., Nagai, K., Hattori, T., Okuhira, K., Shibata, N., Cho, N., and Naito, M. (2014). Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin-proteasome pathway. Cell Death Dis. 5.
90 Raina, K., Lu, J., Qian, Y.M., Altieri, M., Gordon, D., Rossi, A.M.K., Wang, J., Chen, X., Dong, H.Q., Siu, K., et al. (2016). PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. P. Natl. Acad. Sci. USA 113, 7124-7129.   DOI
91 Rask-Andersen, M., Almen, M.S., and Schioth, H.B. (2011). Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 10, 579-590.   DOI