• 제목/요약/키워드: theoretical models

검색결과 1,516건 처리시간 0.027초

경사진 등온 평판위 의 자연대류 유동 에서의 와류 불안정성 과 열전달 상관관계 (Vortex Instability and Heat Transfer Correlations in the Natural Convection Flow over Inclined Isothermal flat Plates)

  • 최창균;유정열;이형인
    • 대한기계학회논문집
    • /
    • 제8권1호
    • /
    • pp.10-17
    • /
    • 1984
  • The critical conditions marking the onset of thermally induced vortices over an inclined iso-thermal plate are investigated using the linear stability theory. The stability equations are simplified by estimating the orders of magnitude of respective terms. The analysis is carried out under the assumption that for the system of large Prandtl numbers temperature disturbances are initiated within the conventional thermal boundary layer of the basic flow. The stability criteria obtained from the present results agree well with those of the existing quasi-parallel flow models. In addition it is found that the critical conditions generate the heat transfer correlation in good agreement with experiments. Therefore, it is suggested that the validity of existing theoretical models will be reexamined.

SUNSPOT MODELING AND SCALING LAWS

  • SKUMANICH A.
    • 천문학회지
    • /
    • 제36권spc1호
    • /
    • pp.1-5
    • /
    • 2003
  • In an early paper Skumanich suggested the existence of a scaling law relating the mean sunspot magnetic field with the square-root of the photospheric pressure. This was derived from an analysis of a variety of theoretical spot models including those by Yun (1968). These were based on the Schliiter-Temesvary (S- T) similarity assumption. To answer criticisms that such modeling may have unphysical (non-axial maxima) solutions, the S-T model was revisited, Moon et al. (1998), with an improved vector potential function. We consider here the consequences of this work for the scaling relation. We show that by dimensionalizing the lateral force balance equation for the S- T model one finds that a single parameter enters as a characteristic value of the solution. This parameter yields Skumanich's scaling directly. Using an observed universal flux-radius relation for dark solar magnetic features (spots and pores) for comparison, we find good to fair agreement with Yun's characteristic value, however the Moon et al. values deviate significantly.

Photoionization Models for Planetary Nebulae: Comparison of Predictions by NEBULA and CLOUDY

  • Lee, Seong-Jae;Hyung, Siek
    • 한국지구과학회지
    • /
    • 제29권5호
    • /
    • pp.419-427
    • /
    • 2008
  • The Galactic planetary nebulae emit many strong recombination and forbidden lines. By analyzing such lines, the physical condition of the planetary nebulae has been inferred using the strategically important diagnostic line ratios. In order to fully understand the physical condition of a planetary nebula and to derive its chemical abundances, the photoionization model codes, e.g., CLOUDY and NEBULA, were employed for an analysis of gaseous nebular spectra. For the well-studied, relatively simple planetary nebula NGC 7026, theoretical investigation was done with about the same input parameters in models. The predictions made by both codes seem to be in good accord. However, the predicted physical conditions, such as electron temperature and density, are slightly different. Especially, the electron temperatures are predicted to be higher in CLOUDY, which may cause a problem in chemical abundance determination. Our analysis shows that the main discordance may occur due to the diffuse radiation.

A Conceptual Framework for Comprehending the Spatial and Communication Layers in R & D Laboratories

  • Yoo, Uoo Sang
    • Architectural research
    • /
    • 제7권2호
    • /
    • pp.35-45
    • /
    • 2005
  • This study discusses "mechanisms" in a research facility, specifically focusing on the question of how we can understand what happens in the physical environment and the communication between researchers. This study attempts to address this question by examining two physical settings, before and after the move of one research-educational facility, the Institute of Paper Science and Technology. The objective of the study is to suggest conceptual models to comprehend the relationships between spatial layouts and communication. The study examines the underlying mechanism of how the levels of communication meet the layers of spatial structure. The paper has four parts. First, the preceding studies will be reviewed evoking some issues of communication and physical setting in research facilities. Second a conceptual typology in office plan will be developed providing a theoretical framework to review the spatial organization of the subject research facility, the Institute of Paper Science and Technology (IPST). Third, the spatial organization of the former building (before the move) and the present building (after the move) of IPST will be analyzed. Finally, conceptual models of the mechanism between the communication and the spatial organization will be drawn up.

Recessed-gate 4H-SiC MESFET의 DC특성에 관한 연구 (Study on DC Characteristics of 4H-SiC Recessed-Gate MESFETs)

  • 박승욱;황웅준;신무환
    • 한국재료학회지
    • /
    • 제13권1호
    • /
    • pp.11-17
    • /
    • 2003
  • DC characteristics of recessed gate 4H-SiC MESFET were investigated using the device/circuit simulation tool, PISCES. Results of theoretical calculation were compared with the experimental data for the extraction of modeling parameters which were implemented for the prediction of DC and gate leakage characteristics at high temperatures. The current-voltage analysis using a fixed mobility model revealed that the short channel effect is influenced by the defects in SiC. The incomplete ionization models are found out significant physical models for an accurate prediction of SiC device performance. Gate leakage is shown to increase with the device operation temperatures and to decrease with the Schottky barrier height of gate metal.

유연도 영향계수법을 이용한 접촉 결합 부의 모델링 (Finite Element Modeling of Contact Joints by Flexibility Influence Coefficient)

  • 조성욱;오제택
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.128-135
    • /
    • 2006
  • Rational dynamic modeling and analysis method f3r complex structures are studied with special attention to slide way joints. For modeling of slide way joints, a general modeling technique is used by using the influence coefficients method which is applied to the conversion of detailed finite element model to the equivalent reduced joint model. The theoretical part of this method is illustrated and the method is applied to the structure with slide way joint. In this method, the non-linearity of the contact surfaces is considered within a proper range and the boundary effect of the joint model could be eliminated. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam and slide way joints of the vertical type lathe. The method can also be used to other kinds of joint modeling. The results of these analysis were compared with those of Yoshimura models and rigid joint models, which demonstrated the practical applicability of the proposed method.

두 대체품에 대한 수익관리 모형 연구 (Yield Management Models for Two Substitutable Products)

  • 김상원
    • 한국경영과학회지
    • /
    • 제41권2호
    • /
    • pp.1-16
    • /
    • 2016
  • Yield management, which originated from the U.S. service industry, uses pricing techniques and information systems to make demand management decisions. Demand uncertainty is an important factor in the area of demand management. A key strategy to reduce the effects of demand uncertainty is substitution. The most generally known type of substitution is inventory-driven substitution, in which consumers substitute an out-of-stock product by buying a similar or other type of product. Another type of substitution is the price-driven substitution, which occurs as a result of price changes. In this research, we consider two market segments that have unique perishable products. We develop yield management optimization models with stochastic demand based on the newsvendor model where inventory-driven and price-driven substitutions are allowed between products in the two market segments. The most significant contribution of this research is that it develops analytical procedures to determine optimal solutions and considers both types of substitution. We also provide detailed theoretical analysis and numerical examples.

Theoretical Modeling of Pulsed Plasma Thruster Performance with Teflon Ablation

  • Cho, Mingyoung;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.138-143
    • /
    • 2017
  • A performance analysis for a pulsed plasma thruster(PPT) has been conducted to predict the thrust and current change. Two models were implemented - a one-dimensional lumped circuit analysis model and the Teflon ablation model provided by Michael Keidar. The circuit model incorporating resistance and inductance models was adapted to predict the magnitude of the discharge current. Numerical simulations like current discharge rates with different voltages were reasonably well compared with experimental data. The effects of Teflon ablation on thruster characteristics were investigated.

PRE-MAIN SEQUENCE EVOLUTIONS OF SOLAR ABUNDANCE LOW MASS STARS

  • Jung, Youn-Kil;Kim, Y.C.
    • Journal of Astronomy and Space Sciences
    • /
    • 제24권1호
    • /
    • pp.1-30
    • /
    • 2007
  • We present the Pre-Main Sequence (PMS) evolutionary tracks of stars with $0.065{\sim}5.0M_{\odot}$. The models were evolved from the PMS stellar birthline to the onset of hydrogen burning in the core. The convective turnover timescales which enables an observational test of theoretical model, particulary in the stellar dynamic activity, are also calculated. All models have Sun-like metal abundance, typically considered as the stars in the Galactic disk and the star formation region of Population I star. The convection phenomenon is treated by the usual mixing length approximation. All evolutionary tracks are available upon request.

Behaviour of volcanic pumice based thin walled composite filled columns under eccentric loading

  • Anwar Hossain, Khandaker M.
    • Structural Engineering and Mechanics
    • /
    • 제16권1호
    • /
    • pp.63-81
    • /
    • 2003
  • This paper describes experimental and theoretical investigations on the behaviour of thin walled composite (TWC) filled columns under eccentric loading conditions. Details of the experimental investigation including description of the test columns, testing arrangements, failure modes, strain characteristics, load-deformation responses and effects of various geometric and material parameters are presented. The current paper also introduces the use and effect of lightweight Volcanic Pumice Concrete (VPC) in TWC columns. Analytical models for the design of columns under eccentric loading conditions have been developed taking into consideration the effect of confined concrete. The performance of design equations is validated through experimental results. The proposed design models are found to produce better results compared with available design procedures and Code based formulations. A computer program is developed to generate the interaction diagrams based on the proposed design equations that can be used for design purposes.