DOI QR코드

DOI QR Code

SUNSPOT MODELING AND SCALING LAWS

  • SKUMANICH A. (High Altitude Observatory, NCAR)
  • Published : 2003.06.01

Abstract

In an early paper Skumanich suggested the existence of a scaling law relating the mean sunspot magnetic field with the square-root of the photospheric pressure. This was derived from an analysis of a variety of theoretical spot models including those by Yun (1968). These were based on the Schliiter-Temesvary (S- T) similarity assumption. To answer criticisms that such modeling may have unphysical (non-axial maxima) solutions, the S-T model was revisited, Moon et al. (1998), with an improved vector potential function. We consider here the consequences of this work for the scaling relation. We show that by dimensionalizing the lateral force balance equation for the S- T model one finds that a single parameter enters as a characteristic value of the solution. This parameter yields Skumanich's scaling directly. Using an observed universal flux-radius relation for dark solar magnetic features (spots and pores) for comparison, we find good to fair agreement with Yun's characteristic value, however the Moon et al. values deviate significantly.

Keywords

References

  1. Deinzer, W. 1965, On the Magneto-Hydrostatic Theory of Sunspots, ApJ, 141, 548-563 https://doi.org/10.1086/148144
  2. Fl$\aa$, T., Osherovich, V. A., & Skumanich, A. 1982, On the Magnetic and Thermodynamic Consequences of the Return Flux Sunspot Model, ApJ, 261, 700-709 https://doi.org/10.1086/160380
  3. Moon, Y.-J, Yun, H. S., & Park, J.-S. 1998, Revisit to Schl$\"{u}$ter-Temesvary Self-Similar Sunspot Models, ApJ, 494, 851-857 https://doi.org/10.1086/305239
  4. Skumanich, A. 1992a, Physical Models of Solar and Stellar Spots, in Surface inhomogeneities on late type stars, Lecture Notes in Physics, Proc. of Armagh Bicentenary Colloquium, (P. B. Byrne and D. J. Mullan, eds.), Springer-Verlag, Berlin, 94-107
  5. Skumanich, A. 1992b, Observations of the mesoscale magnetic structure of sunspots, in Sunspots: Theory and Observations, (J. H. Thomas and N. O. Weiss, eds.), NATO ASI series, (Dordrecht: Kluwer), 121-138
  6. Skumanich, A. 1999 The Evolution of PhotosphericMagnetic Structures in Terms of Size-Flux Relation-shiP, ApJ, 512, 975-984 https://doi.org/10.1086/306810
  7. Yun, H. S. 1968, Theoretical Sunspot Models, PhD thesis, Indiana University (Ami Arbor, Mich.: University Microfilms)
  8. Yun, H. S. 1970, Theoretical Model of Sunspots, ApJ, 162, 975-986 https://doi.org/10.1086/150729
  9. Yun, H. S. 1971, A Magnetostatic Sunspot Model with 'Twisted' Field, Sol. Phys., 16, 398-403 https://doi.org/10.1007/BF00162481
  10. Yun, H. S. 1972, Magnetic Fields in an Umbral Atmosphere Under 'Similarity Con6guratioii', Sol. Phys., 22, 137-139 https://doi.org/10.1007/BF00145468
  11. Vitense, E. 1951a, Der Aufbau der Stematmosph$\"{a}$ren IV. Teil. Kontinuierliche Absorption und Streuungals Funktion von Druck und Temperatur, Zs f AP, 28, 81-112
  12. Vitense, E. 1951b, Zustandsgrossen und Spektrale Eigenschaften von Sternatmosph$\"{a}$ren, Zs. f Ap., 29, 73-93
  13. Bohm-Vitense, E. 1958, Uber die Wasserstofftonvektionszone in Sternen verscheidener Effektivtemperaturen und Leuchtkr$\"{a}$fte, Zs. f Ap., 46, 108-143